

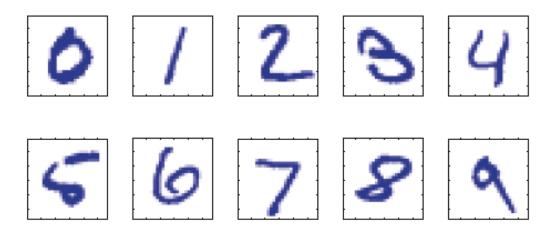
Basics of deep learning part 1

By Pierre-Marc Jodoin

Before we start

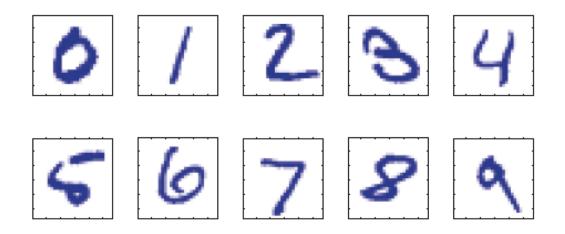
jodoin.github.io/dlmi2024

What is machine learning?



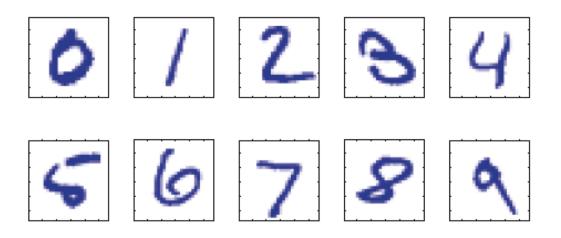
Answer : Design your own rules?

A series of aligned pixels => '1'
A circle of pixels => '0'
Etc.



Answer : Design your own rules? Wrong

> Bad generalization 111111



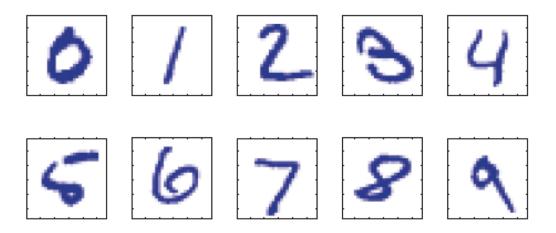
Answer : Design your own rules? Wrong

Bad generalization

Dogs

Birds

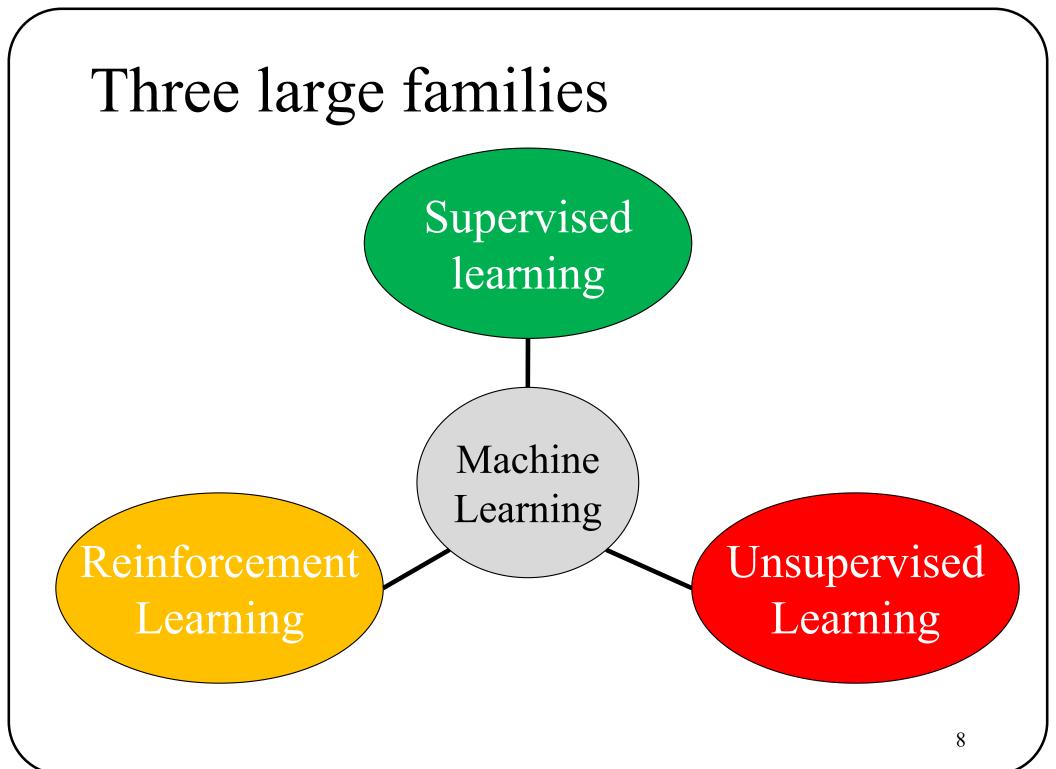
(Hugo Larochelle)

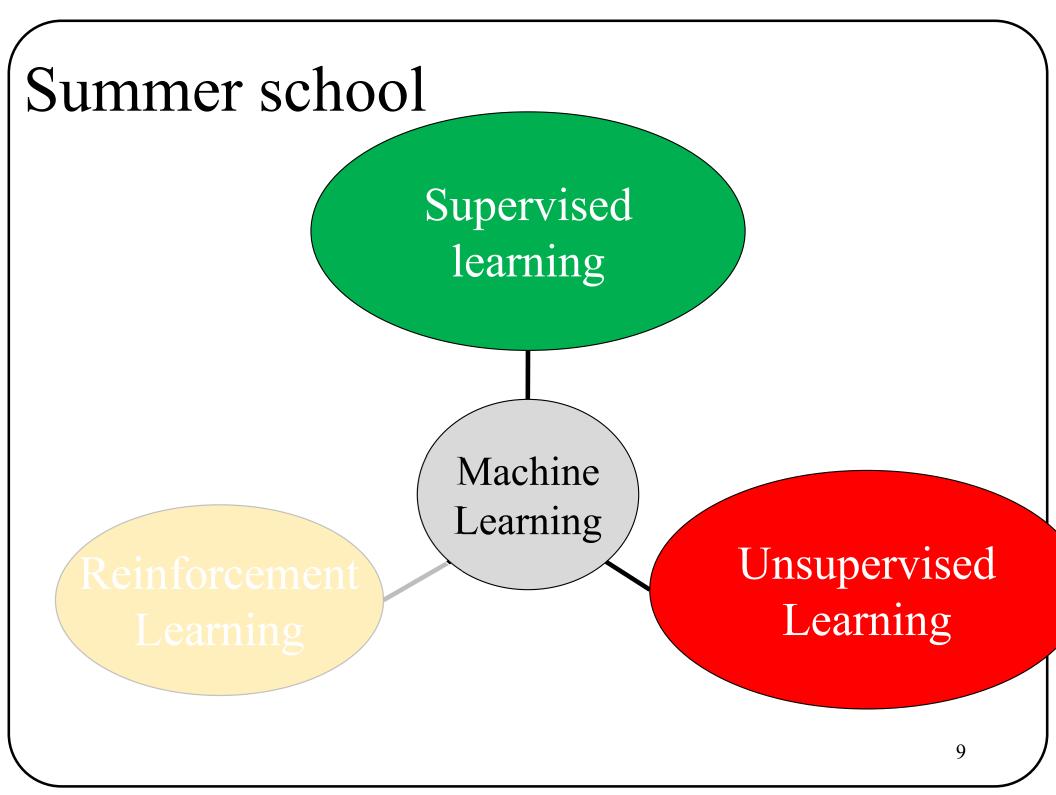


Answer : Let the computer « learn » the rules

> Main goal of machine learning

(Hugo Larochelle)





Provide the algorithm with **annotated training data**

...and the algorithm returns a function capable of **generalizing** on new data

Provide the algorithm with annotated training data

The training dataset

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

where $\vec{x}_i \in \Re^d$ is an **input** and t_i is a **target**

Goal of a supervised machine learning method

From a **training dataset**: $D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$

 $\vec{x}_i \in \Re^d$ input data t_i target associated to \vec{x}_i

the goal is to learn a function that may predict t_i given \vec{x}_i

$$y_W(\vec{x}_i) \to t_i$$

where W are the **parameters** of the model.

Once the model $y_W(\vec{x})$ is trained, we use a **test set** D_{test} to gauge the **generalization** capabilities of the model.

Unsupervised learning

When no target is explicitly provided

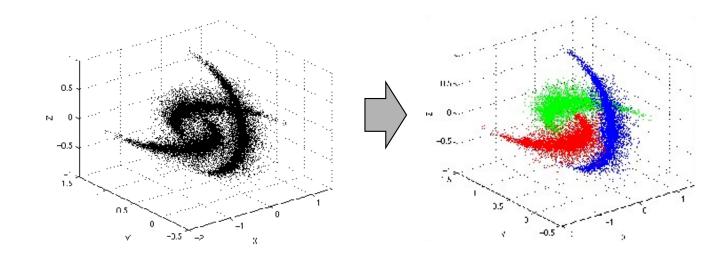
E.g. data *clustering*

When no target is explicitly provided

E.g. data *clustering*

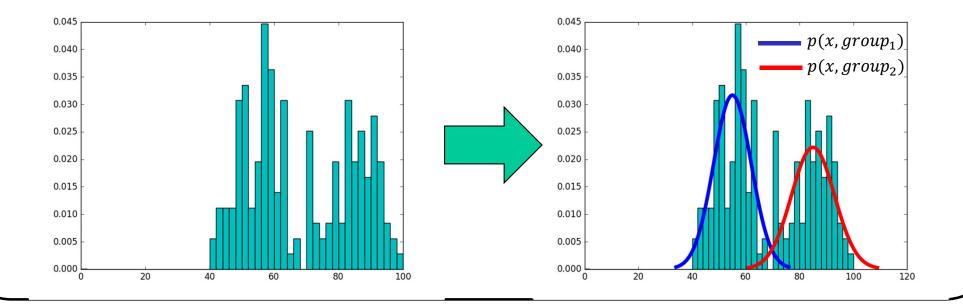


No limit to dimensionality. Could be 3D, 4D,...100kD



Probability density function estimation

Example : find two groups of patients following a memory test



Supervised vs non-supervised
Main topic of
the school

$$D = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N)\}$$

Unsupervised learning : unknown target

$$D = \left\{ \vec{x}_1, \vec{x}_2, \dots, \vec{x}_N \right\}$$

Supervised vs non-supervised

Supervised learning : there is a tar

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2) \}$$

Logistic regression Perceptron Multilayer perceptron Convolutional neural networks Recurrent neural networks Semi-supervised learning Graph Neural Nets Transformers Etc.

Unsupervised learning : unknown target

$$D = \left\{ \vec{x}_1, \vec{x}_2, \dots, \vec{x}_N \right\}$$

Supervised vs non-supervised

Supervised learning : there is a target

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

Unsupervised learning : unknown

Autoencoders Variational autoencoders GANs

$$D = \left\{ \vec{x}_1, \vec{x}_2, \dots, \vec{x}_N \right\}$$

Classification vs regression

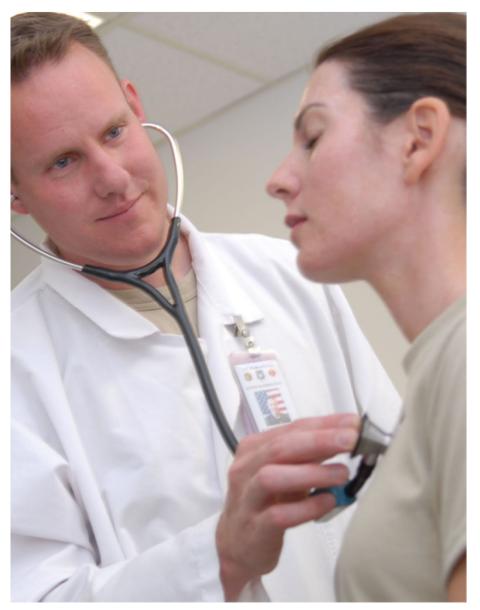
Two main applications

- ➤ **Classification :** the target is a class label $t \in \{1, ..., K\}$
 - Exemple : disease recognition
 - $\checkmark \vec{x}$: vector of medical measures, age, sex, etc.
 - *t*: {myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, normal}
- ▶ **Regression :** the target is a real number $t \in \mathbb{R}$
 - Exemple : prediction of life expectancy
 - \checkmark \vec{x} : vector of medical measures, age, sex, etc.
 - \checkmark *t* : number of months before death.

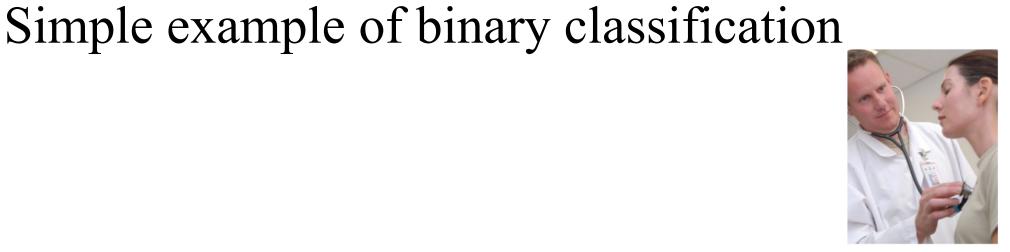
Two main applications

- ➤ **Classification :** the target is a class label $t \in \{1, ..., K\}$
 - Exemple : disease recognition
 - \checkmark \vec{x} : vector of medical measures, age, sex, etc.
 - \checkmark *t* : myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, normal
- ▶ **Régression :** the target is a real number $t \in \mathbb{R}$
 - Exentiple : prediction of life expectancy
 - \checkmark : vector of medical measures, age, sex, etc.
 - \checkmark *t* : number of months before death.

Simple example of binary classification



From Wikimedia Commons the free media repository



D

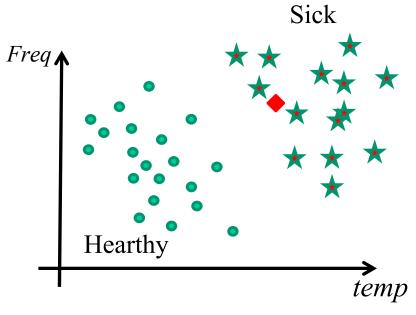
	(temp, freq)	Diagnostic
Patient 1	(37.5, 72)	hearthy
Patient 2	(39.1, 103)	sick
Patient 3	(38.3, 100)	sick
	()	
Patient N	(36.7, 88)	hearthy
	\overline{x}	t

DSick Freq Hearthy temp

Simple example of binary classification

A new patient shows up at the hospital **How can we predict its state**?

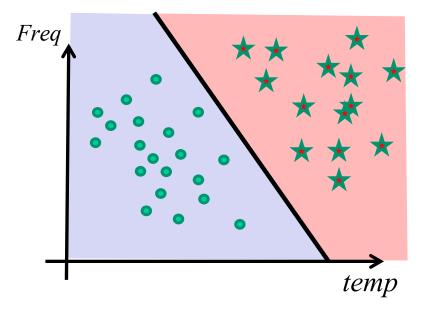
From Wikimedia Commons the free media repository

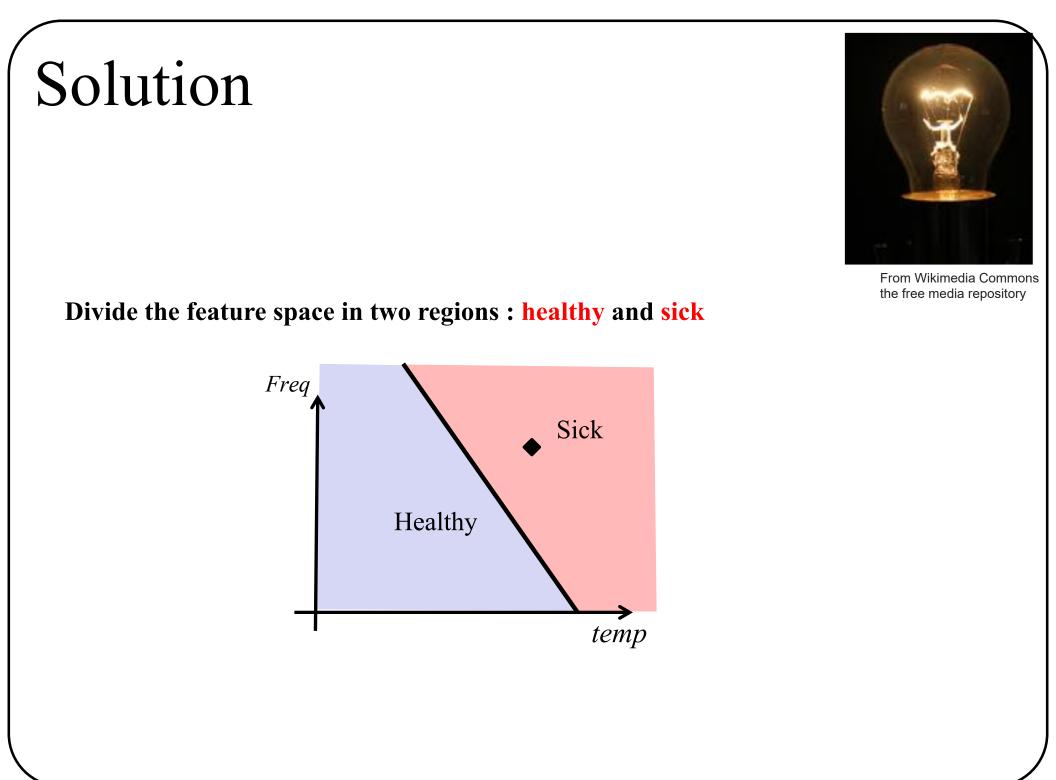


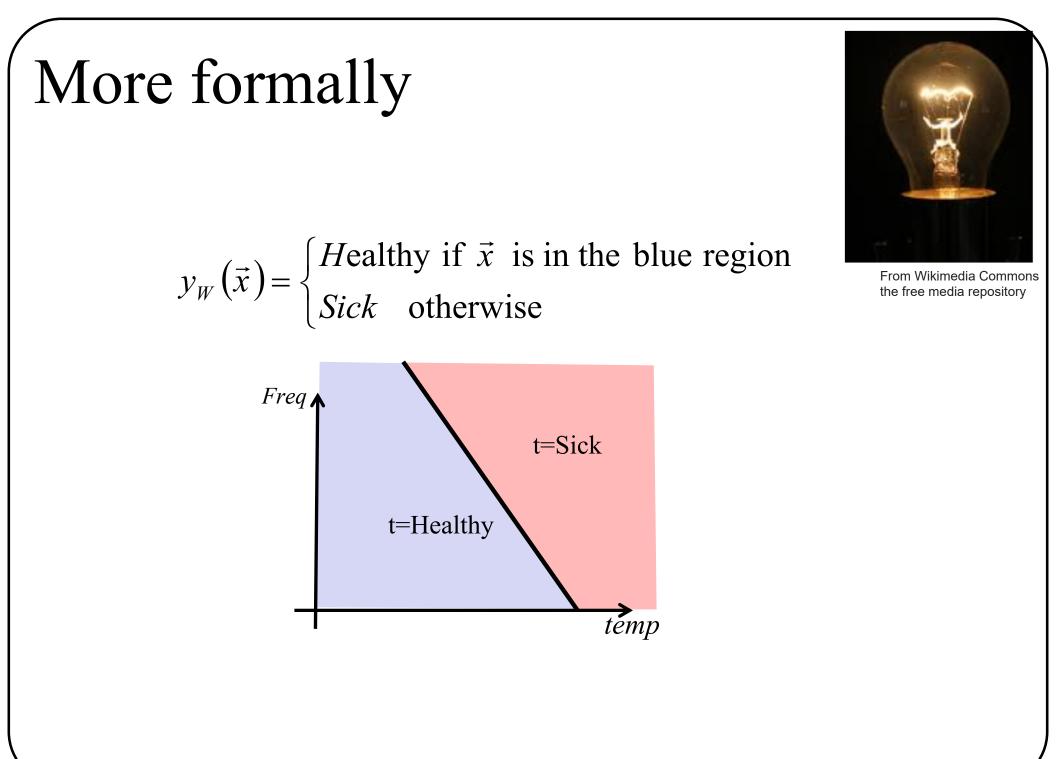
Solution

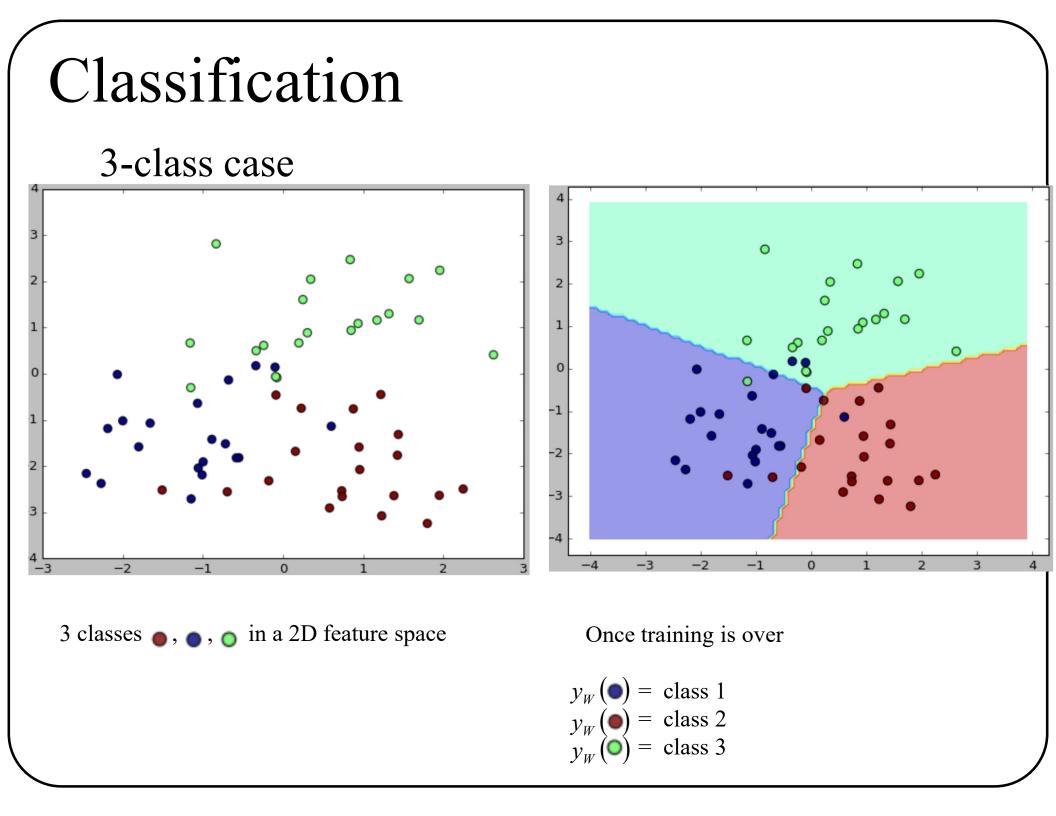
From Wikimedia Commons the free media repository

Divide the feature space in two regions : healthy and sick









Example of a classification dataset

/ \ \ \ / 1 / 7 1 / 7 1 / / / 22222222222222 66666666666666666 ファチョアファファファファファ 8888888888888888888888888 99999999999999999999

Example of a classification dataset

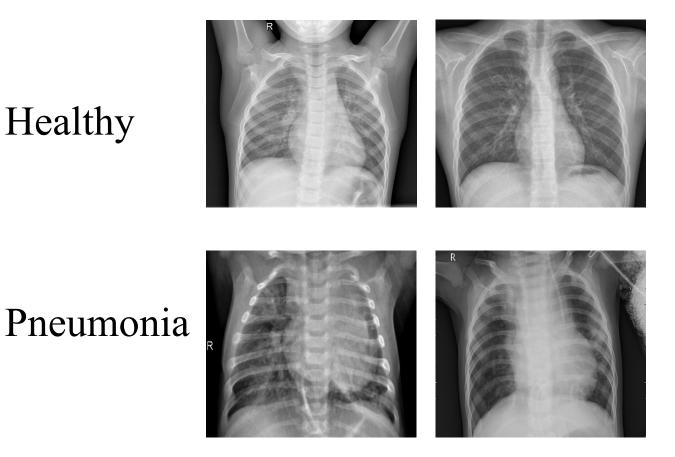
- 10 classes
- 70,000 images
 - => 60,000 training
 - => 10,000 test
- Images are in grayscale => 28x28

We can vectorize these images and represent it by a vector of size 28x28 = 784 dimensions.

Example of a medical classification dataset

Chess X-Ray Pneumonia

Healthy



https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia

Example of a medical classification dataset

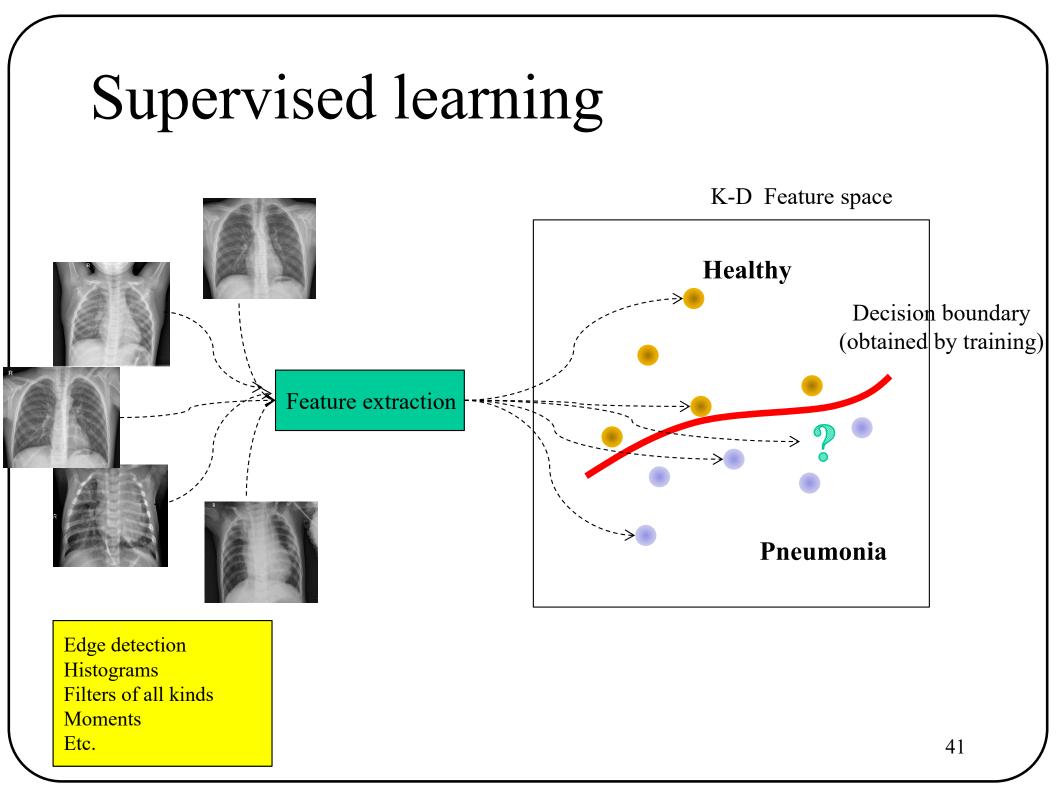
Chess X-Ray Pneumonia

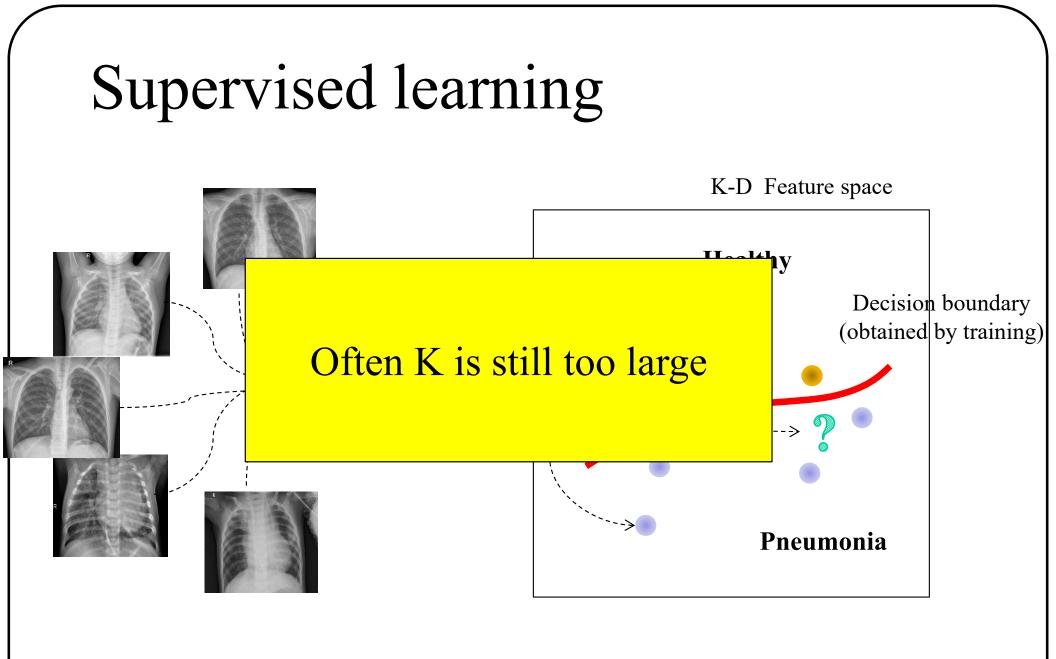
- 2 classes
- 5,840 images,
 => 5,216 training
 => 624 test
 Each image is in grave
- Each image is in grayscale
 => 336 x 264*

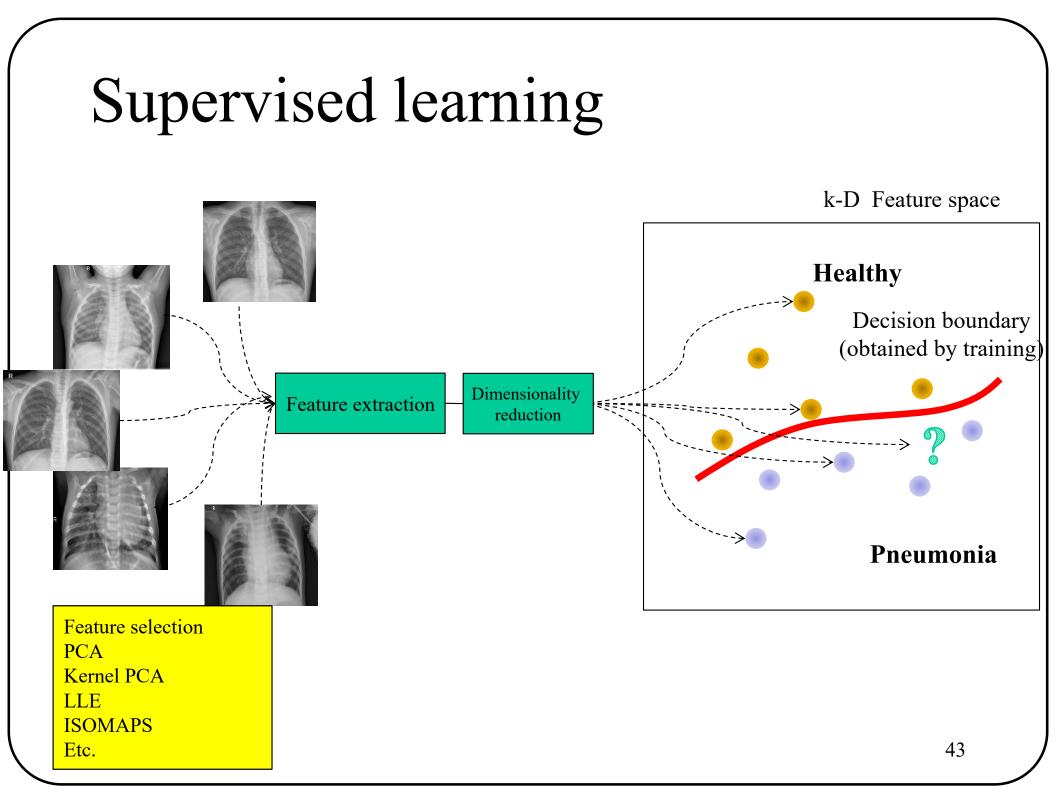
We can vectorize these images and represent it by a vector of size 336x264 = 88,704 dimensions.

Supervised learning Chess X-Ray Pneumonia 88,704 D Feature space Healthy Decision boundary (obtained by training) Pneumonia 39

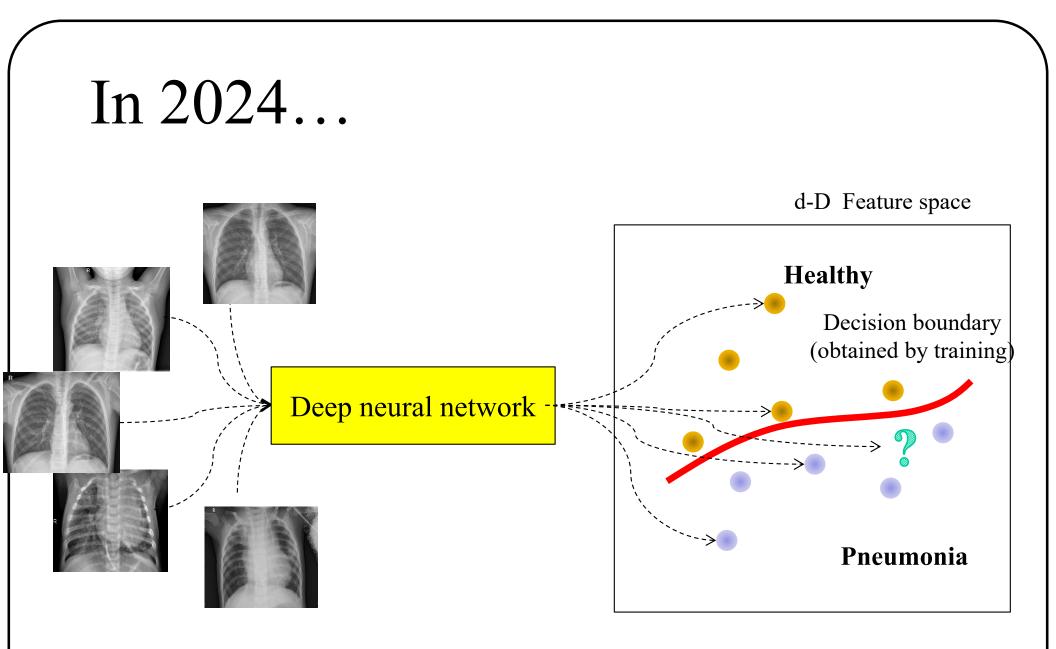
Very large feature spaces (like 88,704 dim) are problematic.







Spoiler alert



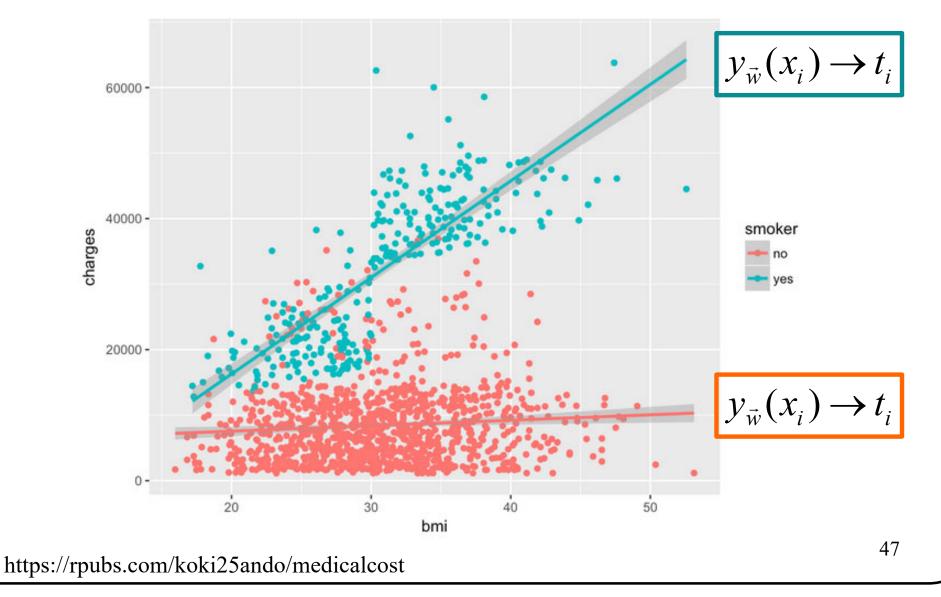
Supervised learning

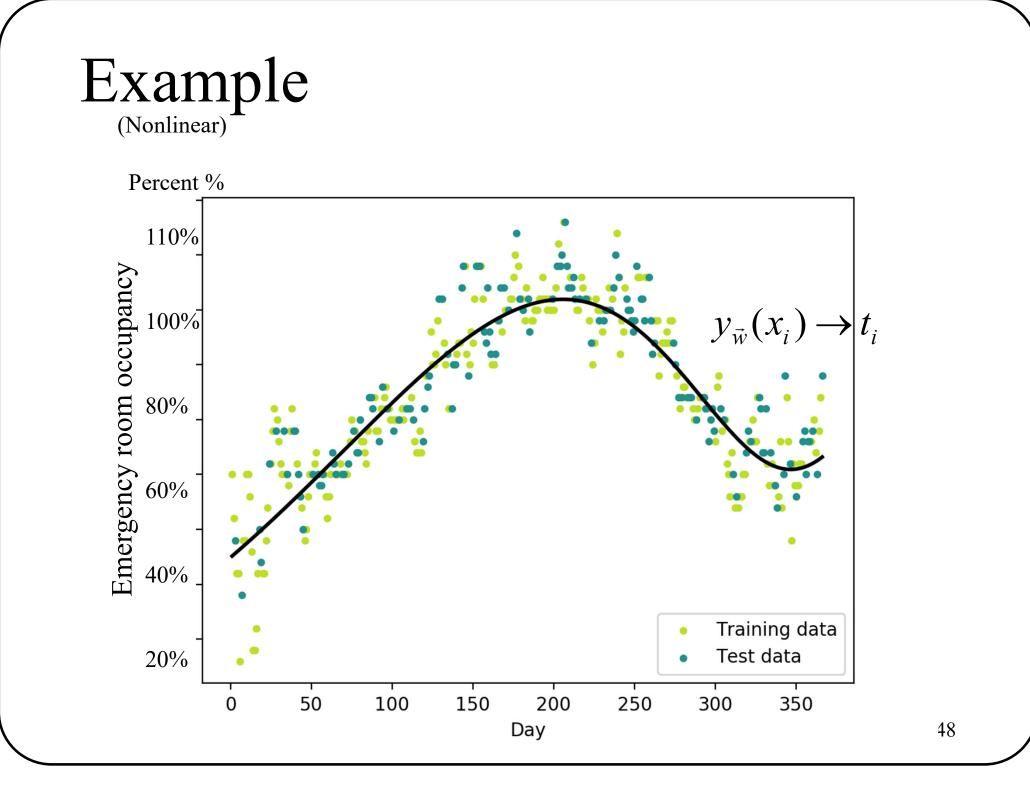
Two main applications

- ► Classification : the target is a class label $t \in \{1, ..., K\}$
 - Exemple : disease recognition
 - \checkmark \vec{x} : vector of medical measures, age, sex, etc.
 - *t* : myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, normal

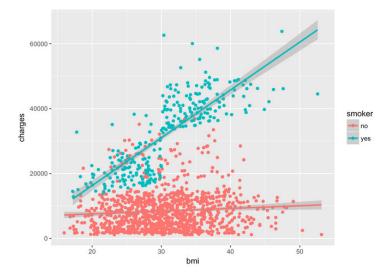
▶ **Regression :** the target is a real number $t \in \mathbb{R}$

- Exemple : prediction of life expectancy
 - \checkmark \vec{x} : vector of medical measures, age, sex, etc.
 - \checkmark *t* : number of months before death.

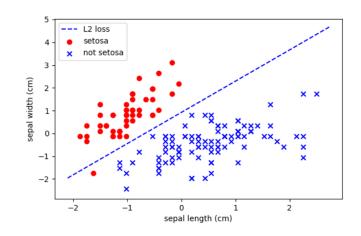




Linear models



https://rpubs.com/koki25ando/medicalcost



https://winder.ai/403-linear-classification/

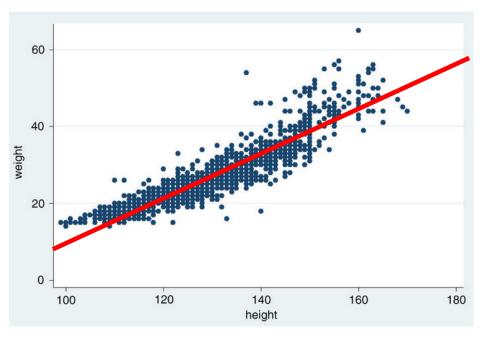
Deep neural nets ... linear models

Vs ?

Linear models are to deep neural nets what transistors are to modern processors

Linear models are still relevant

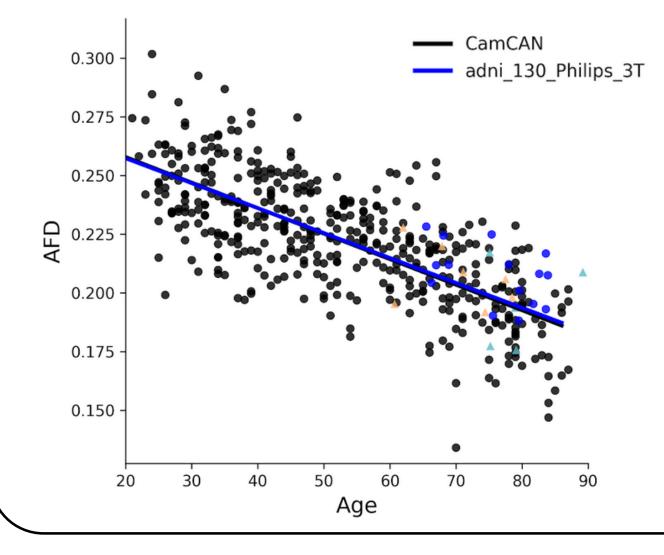
1,694 children surveyed in Tanzania.

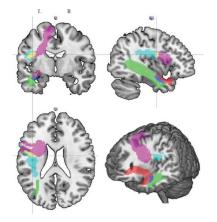


Nordin P, Poggensee G, Mtweve S, Krantz I. From a weighing scale to a pole: a comparison of two different dosage strategies in mass treatment of Schistosomiasis haematobium. Glob Health Action. 2014

Linear models are still relevant

Apparent Fiber Density in the white matter





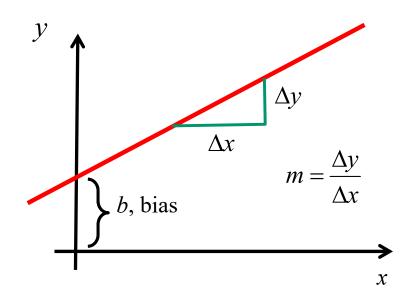
https://commons.wikimedia.org/

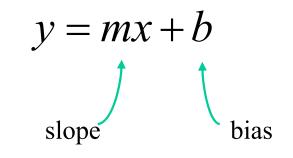


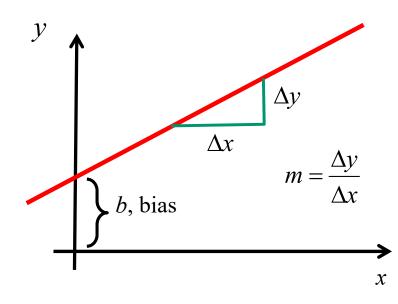
Linear models

Classification

Regression







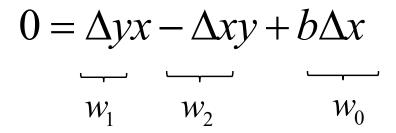
$$y = mx + b$$

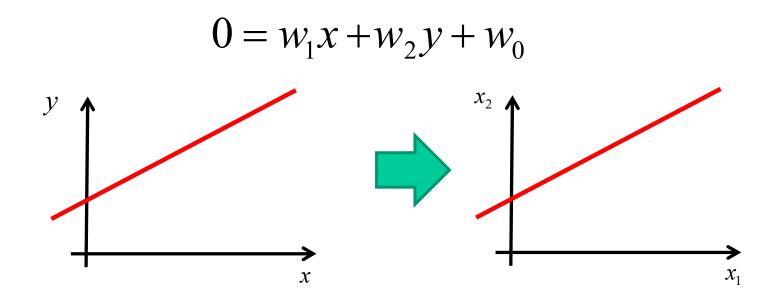
$$y = \frac{\Delta y}{\Delta x} x + b$$

$$y\Delta x = \Delta yx + b\Delta x$$

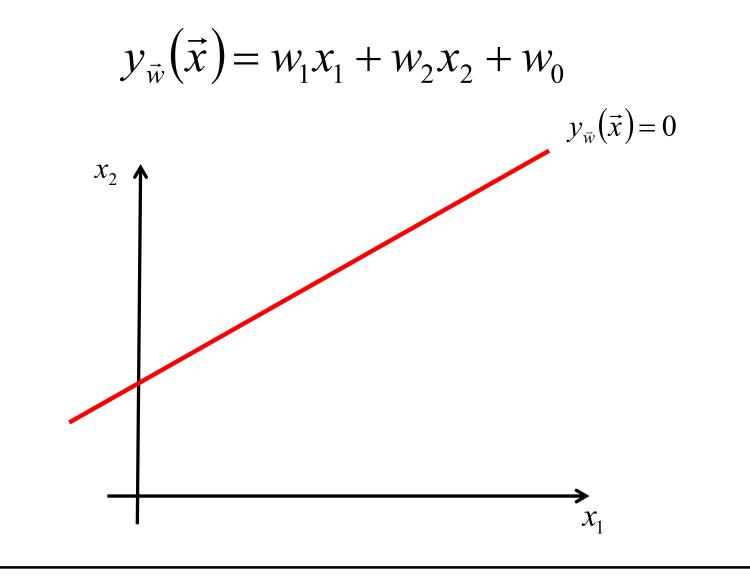
$$0 = \Delta yx - \Delta xy + b\Delta x$$

Rename variables





 $0 = w_1 x_1 + w_2 x_2 + w_0$

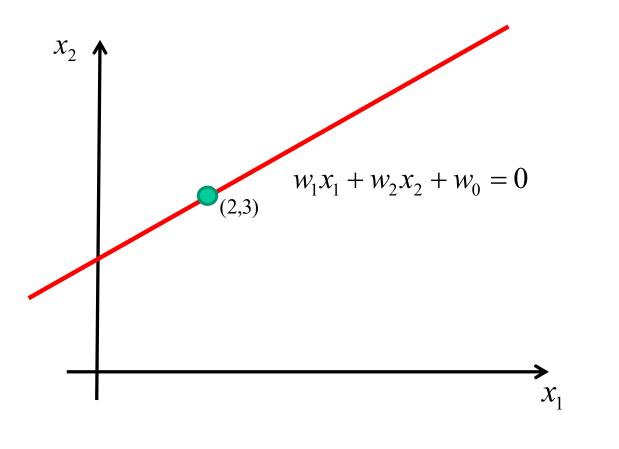


Implicit function

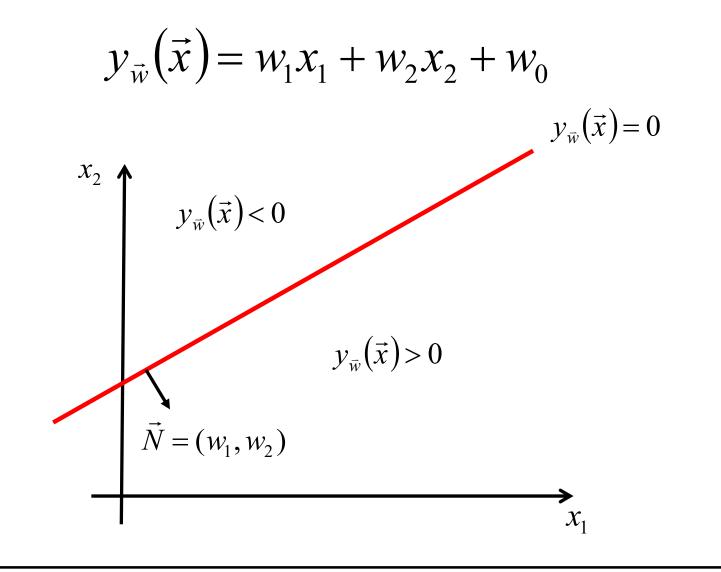
$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$$

 $w_0 = 4.0$

 $w_1 = 1.0$



Classification function

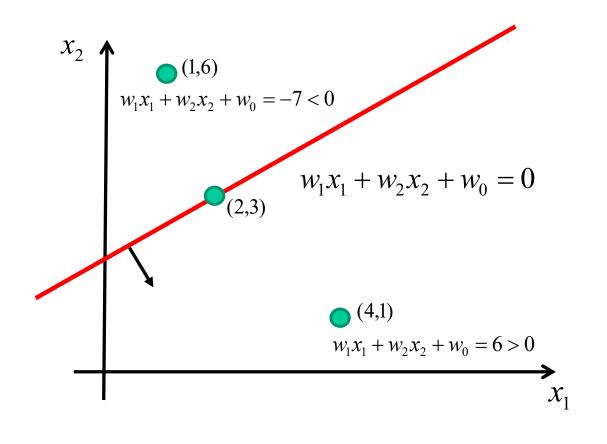


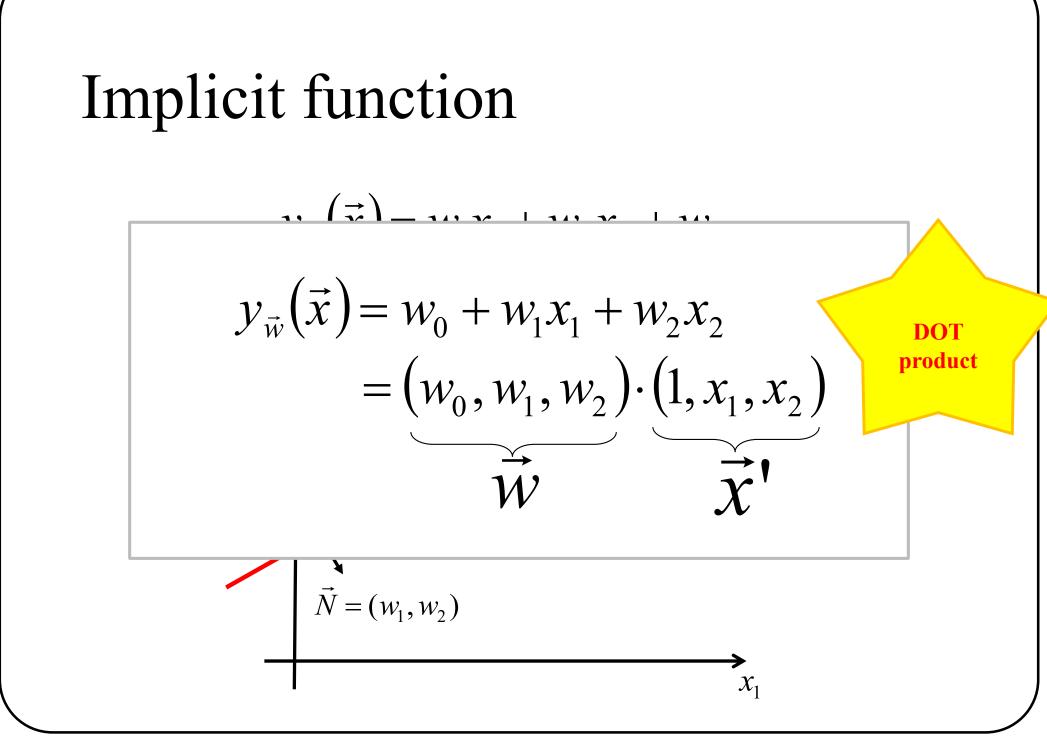
Classification function

$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$$

 $w_0 = 4.0$

 $w_1 = 1.0$

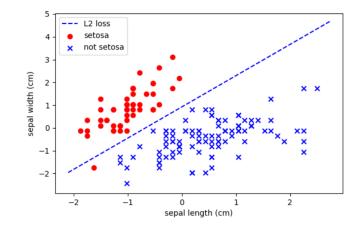






Linear classifier = dot product with bias included

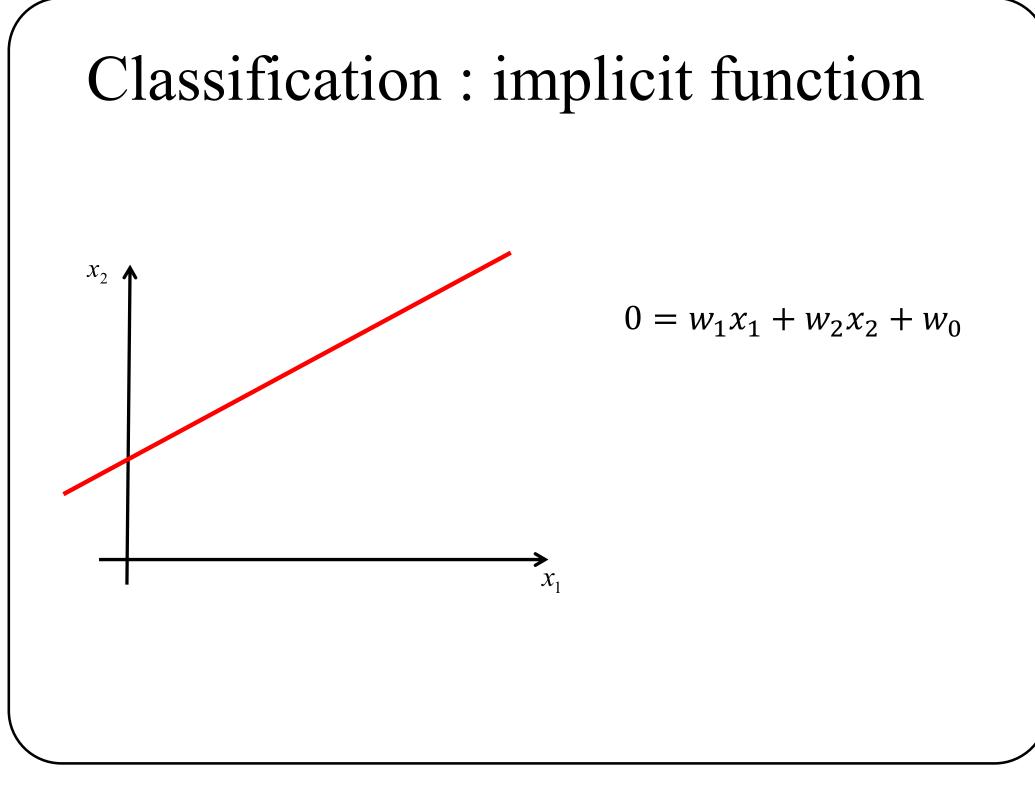
$$y_{\vec{w}}(\vec{x}) = \vec{w}^T \vec{x} = \begin{cases} > 0 & \text{if in front} \\ < 0 & \text{otherwise} \end{cases}$$

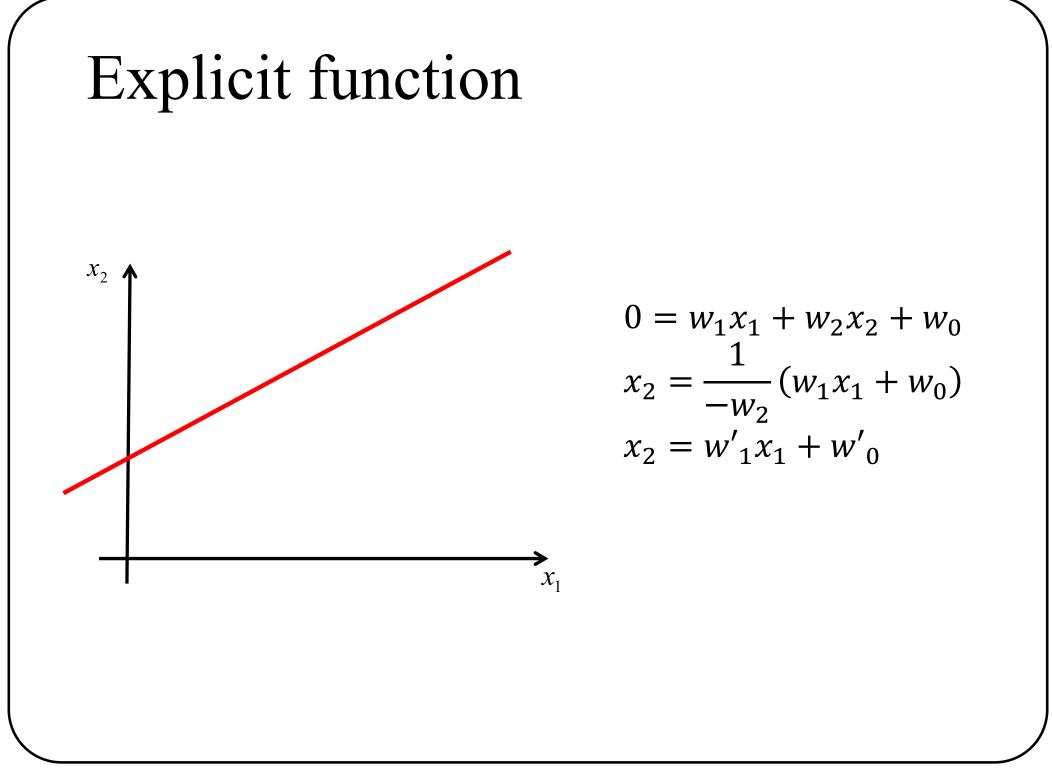


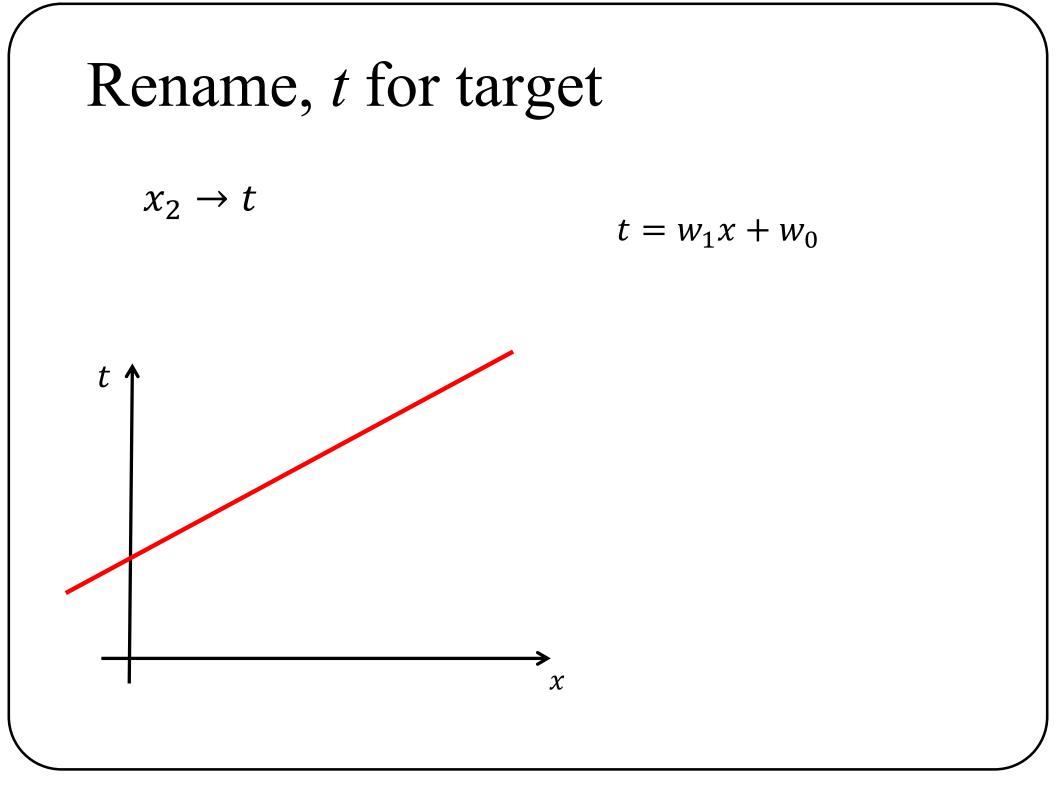
Linear models

Classification

Regression

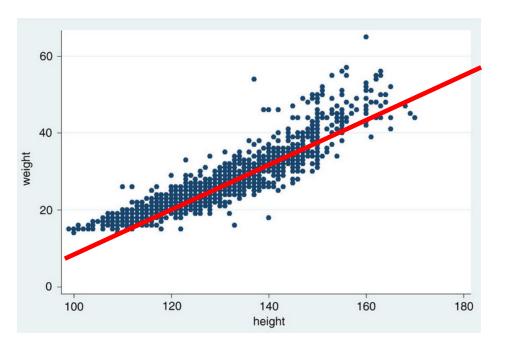






Goal : predict the target t given x

1,694 children surveyed in Tanzania.



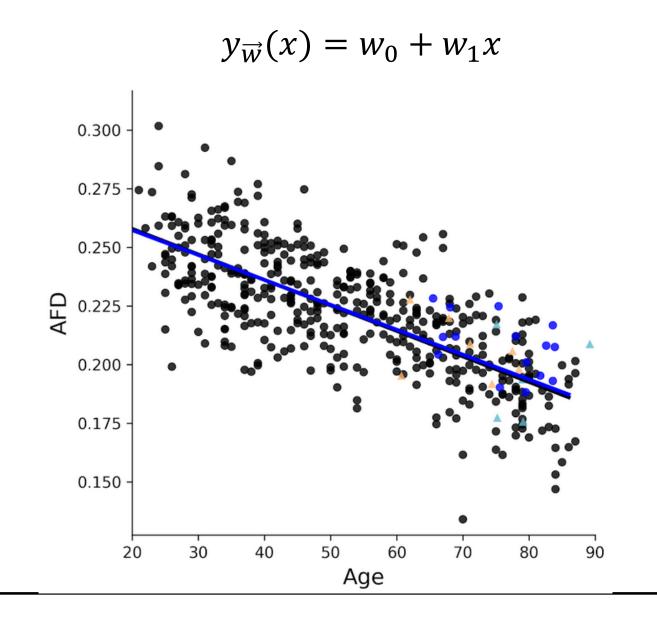
 $y_{\overrightarrow{w}}(x) = w_1 x + w_0$

 $y_{\overrightarrow{w}}(x_i) = t_i \quad \forall i$

Nordin P, Poggensee G, Mtweve S, Krantz I. From a weighing scale to a pole: a comparison of two different dosage strategies in mass treatment of Schistosomiasis haematobium. Glob Health Action. 2014

A line : 1D regression

Example

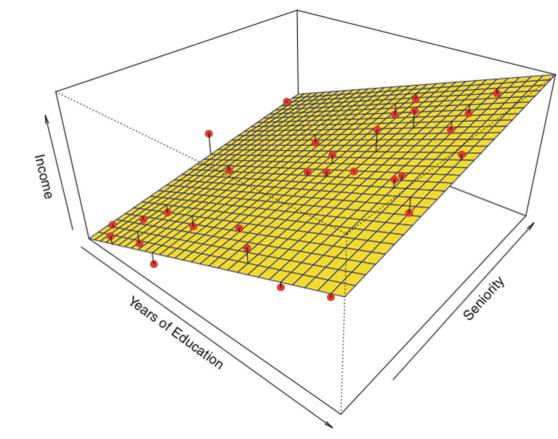


74

A plane : 2D regression

Example

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2$$

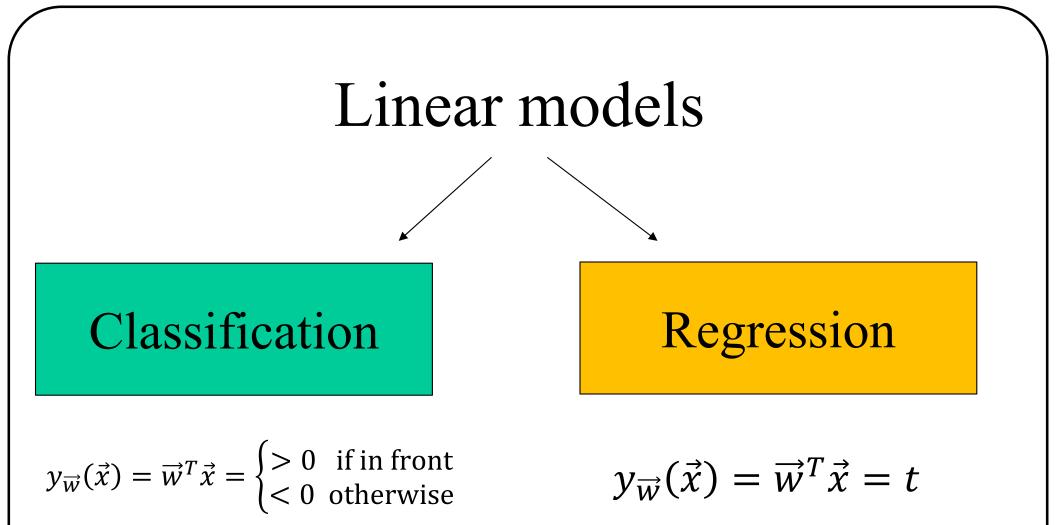


Credit : sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/R/R5_Correlation-Regression/R5_Correlation-Regression4.html

A hyper plane : dD regression

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

$$= \underbrace{\vec{w}^T \vec{x}}$$
Dot product

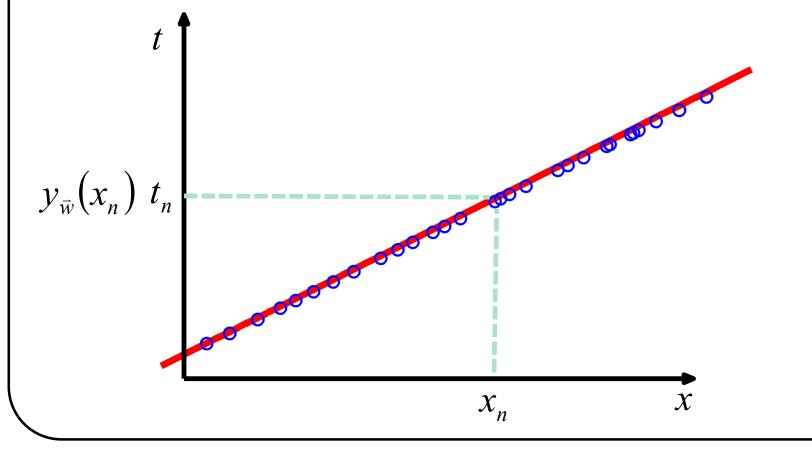


Problem to solve

Given a training example

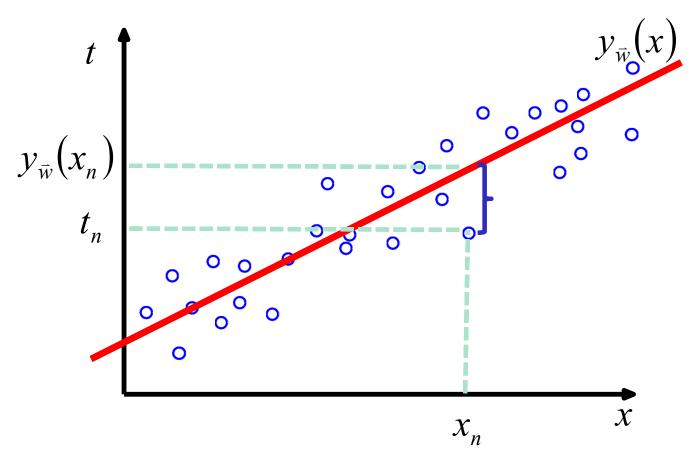
$$D = \{ (x_1, t_1), (x_2, t_2), \dots, (x_N, t_N) \}$$

Ideally, we wish $y_{\bar{w}}(x_i) = t_i$

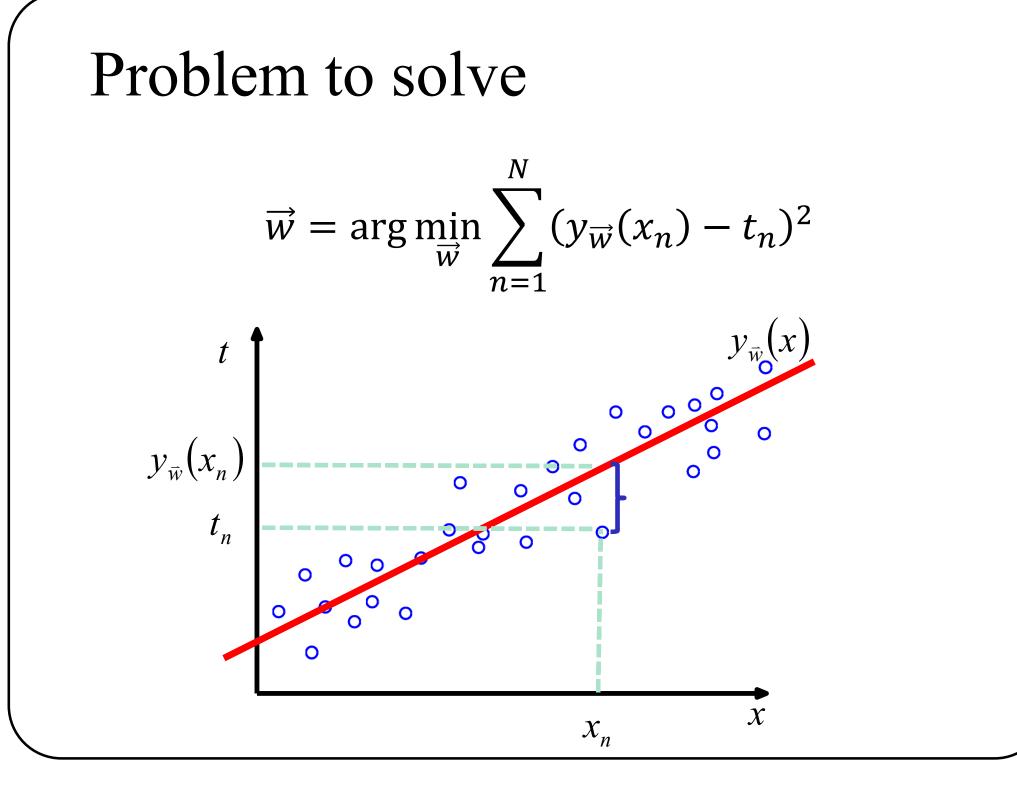


Problem to solve

Unfortunately, real data are **noisy**



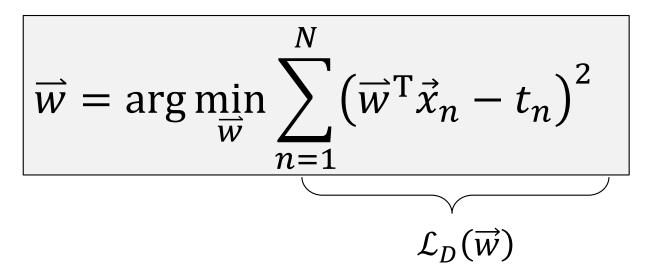
Here the goal is to make small mistakes.



Problem to solve $\vec{w} = \arg \min_{\vec{w}} \sum_{n=1}^{N} (\vec{w}^{T} \vec{x}_{n} - t_{n})^{2}$

If the data is linear + the noise is Gaussian, the best possible weights are those <u>minimizing this function</u>

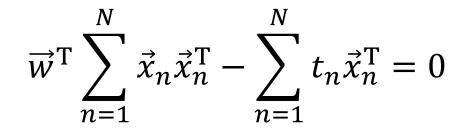
Problem to solve



the « best » \vec{W} is the one for which the gradient is zero

$$\nabla_{\vec{w}} \mathcal{L}_D(\vec{w}) = \sum_{n=1}^N 2\left(\vec{w}^{\mathrm{T}} \vec{x}_n - t_n\right) \vec{x}_n^{\mathrm{T}} = 0$$
$$\vec{w}^{\mathrm{T}} \sum_{n=1}^N \vec{x}_n \vec{x}_n^{\mathrm{T}} - \sum_{n=1}^N t_n \vec{x}_n^{\mathrm{T}} = 0$$

Problem to solve



By isolating \vec{W} , we get

$$\overrightarrow{w} = \left(X^{\mathrm{T}}X\right)^{-1}X^{\mathrm{T}}T$$

where

$$X = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,d} \\ 1 & x_{2,1} & \cdots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N,1} & \cdots & x_{N,d} \end{pmatrix} \qquad T = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix}$$

For a 1D regression

$$y_{\vec{w}}(x) = w_0 + w_1 x$$

$$\overrightarrow{w} = \left(X^T X\right)^{-1} X^T T$$
where
$$X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{pmatrix} T = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix}$$

Age

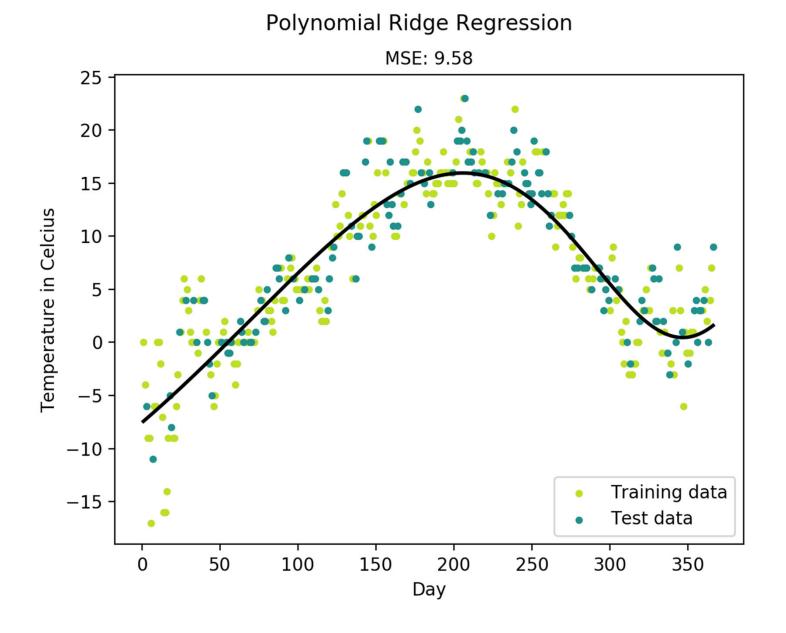
For a 2D regression

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2$$

$$\overrightarrow{W} = \left(X^T X\right)^{-1} X^T T$$
where

$$X = \begin{pmatrix} 1 & x_{1,1} & x_{1,2} \\ 1 & x_{2,1} & x_{2,2} \\ \vdots & \vdots & \vdots \\ 1 & x_{N,1} & x_{N,2} \end{pmatrix}, T = I \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix}$$

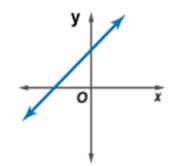
Serioity



86

 $y_{\vec{w}}(\vec{x}) = w_0 + w_1 x$

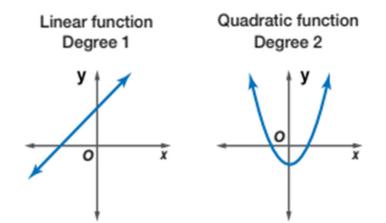
Linear function Degree 1



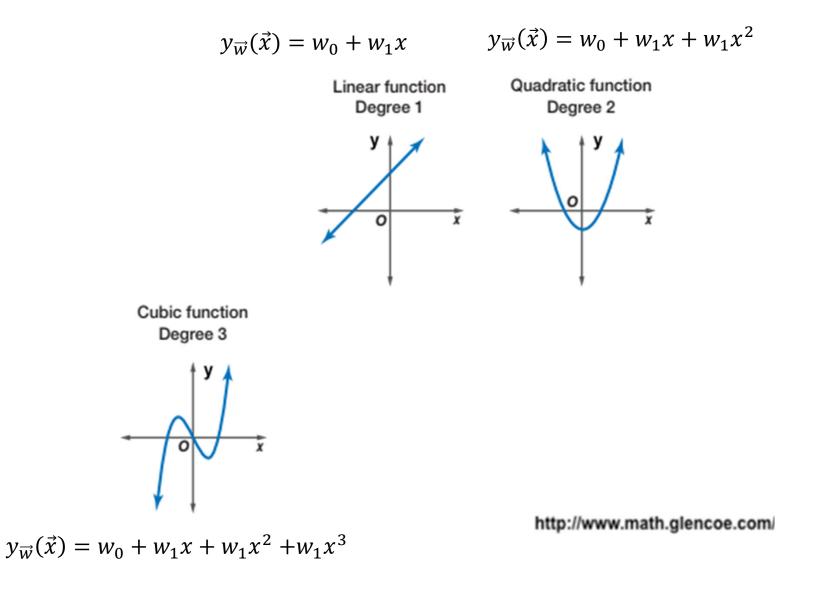
http://www.math.glencoe.com/

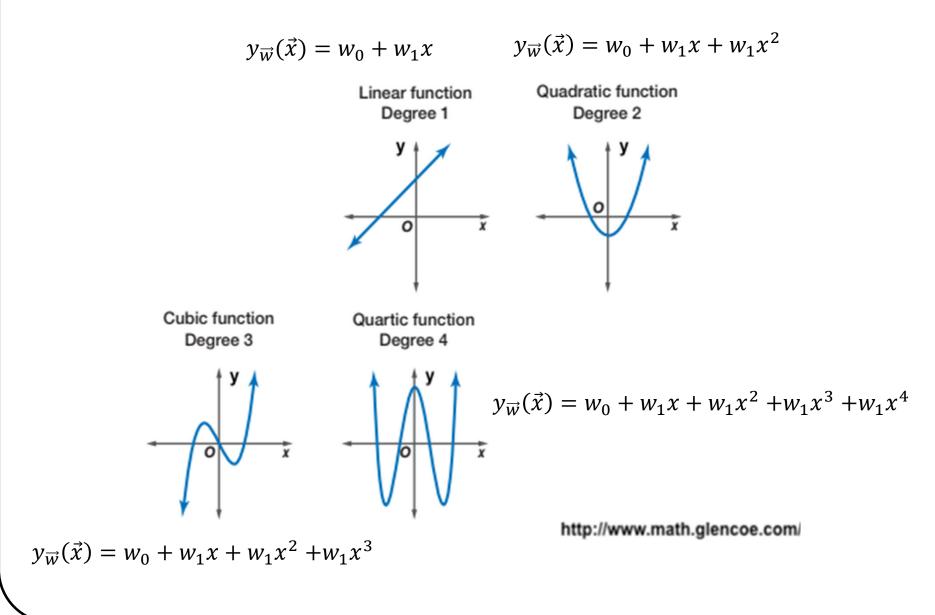
 $y_{\vec{w}}(\vec{x}) = w_0 + w_1 x$

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x + w_1 x^2$$



http://www.math.glencoe.com/





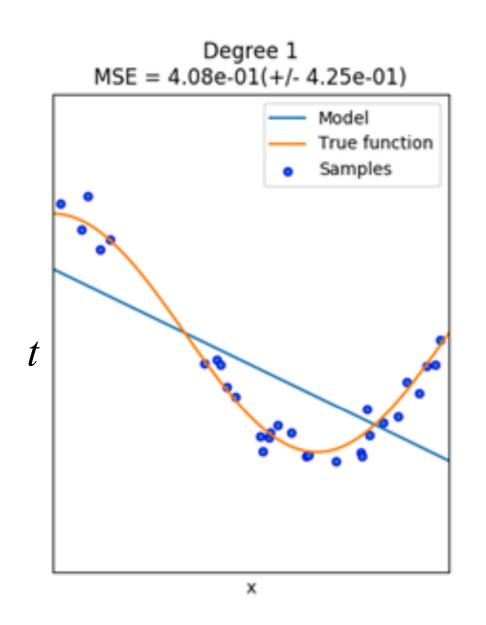
Basis function

Example: Instead of a **1D regression**, lets do a **4D regression**

 $\varphi(x) \to (x, x^2, x^3, x^4)$

$$y_{\vec{w}}(x) = w_0 + w_1 x$$

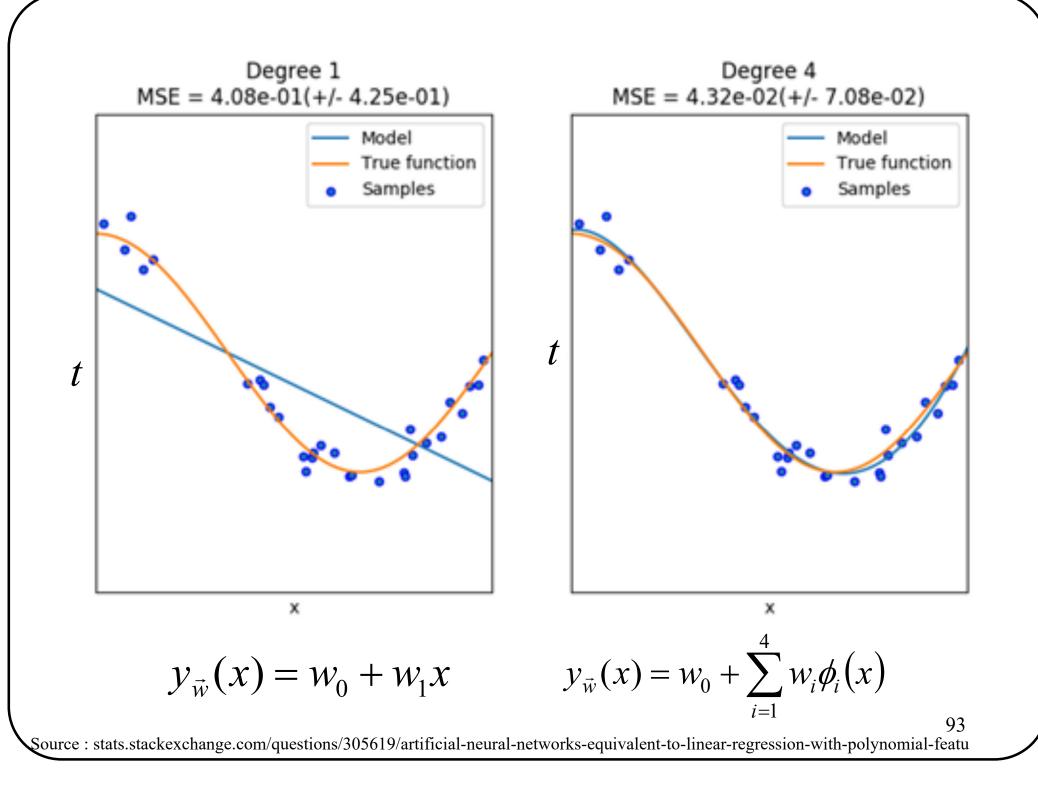
$$y_{\vec{w}}(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$
$$= w_0 + \sum_{i=1}^4 w_i \varphi_i(x)$$

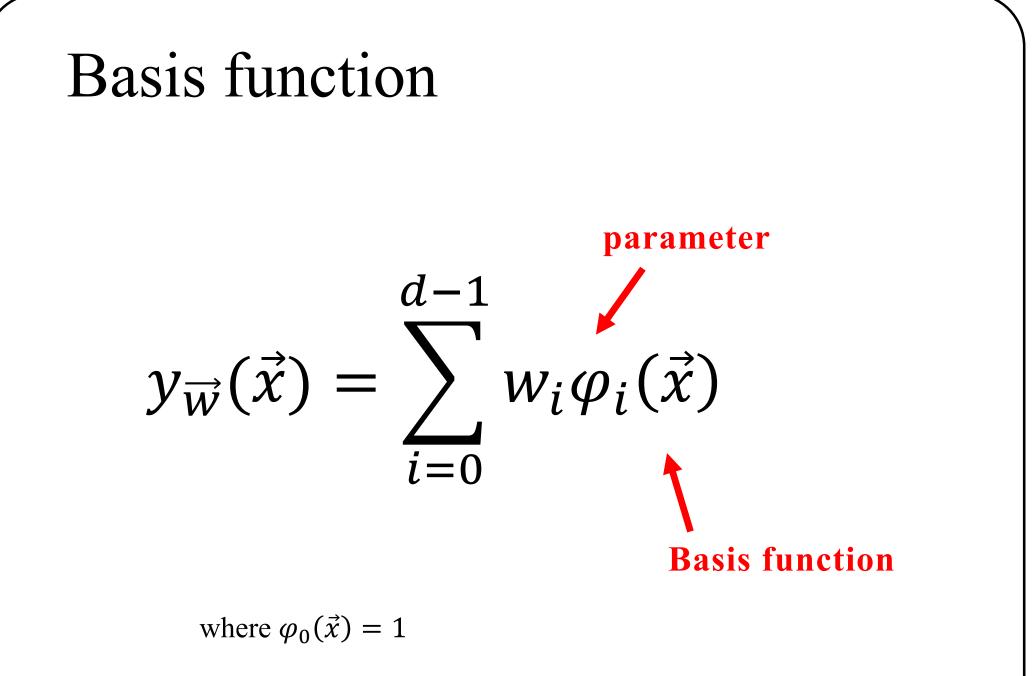


$$y_{\vec{w}}(x) = w_0 + w_1 x$$

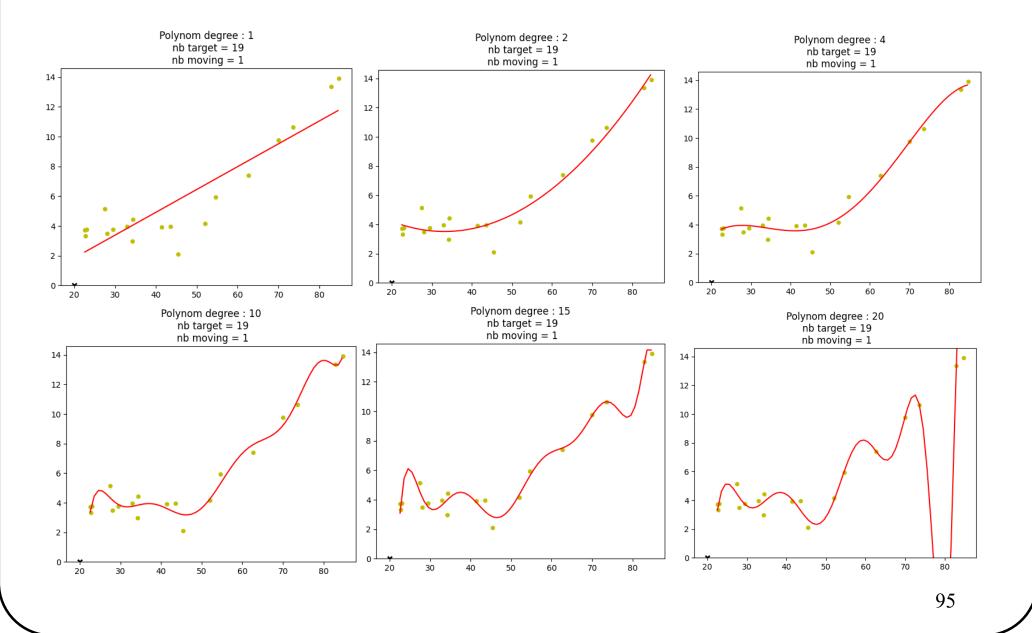
Source : stats.stackexchange.com/questions/305619/artificial-neural-networks-equivalent-to-linear-regression-with-polynomial-featu

92

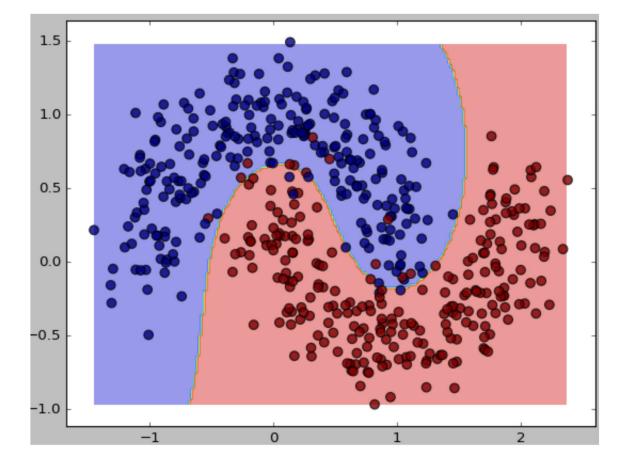




Regression

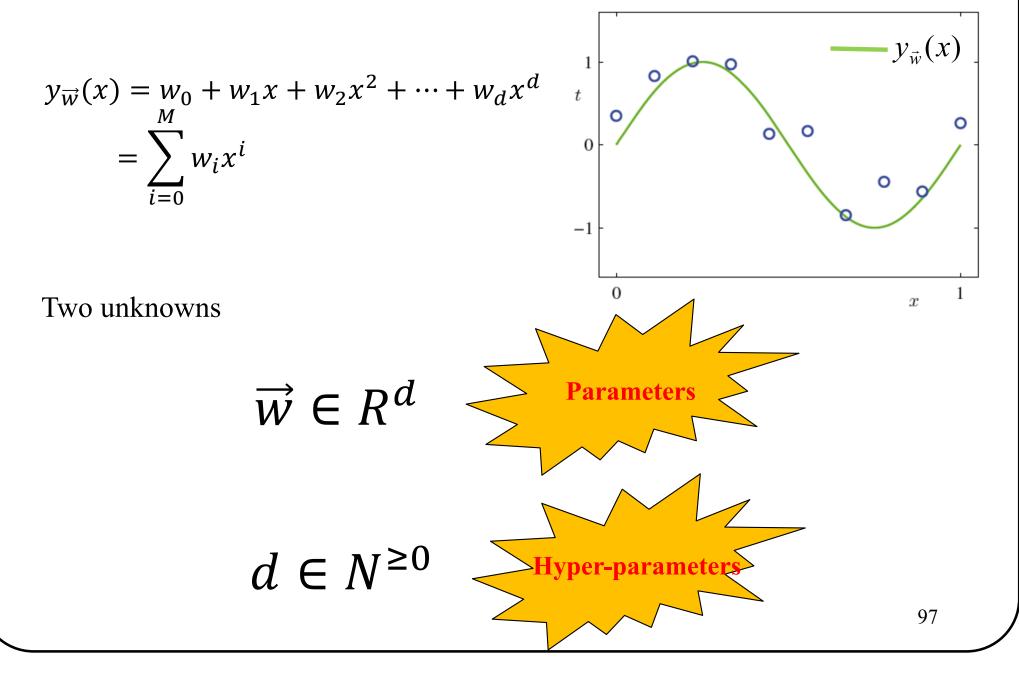


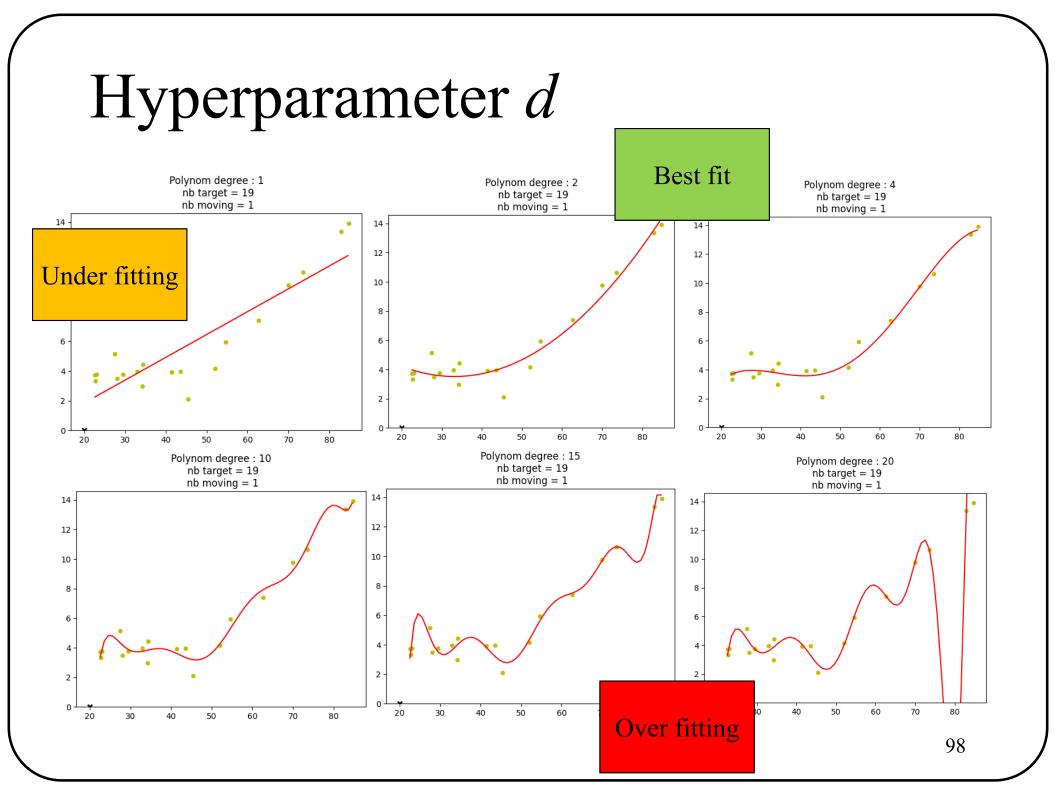
Similar approach for classification



96

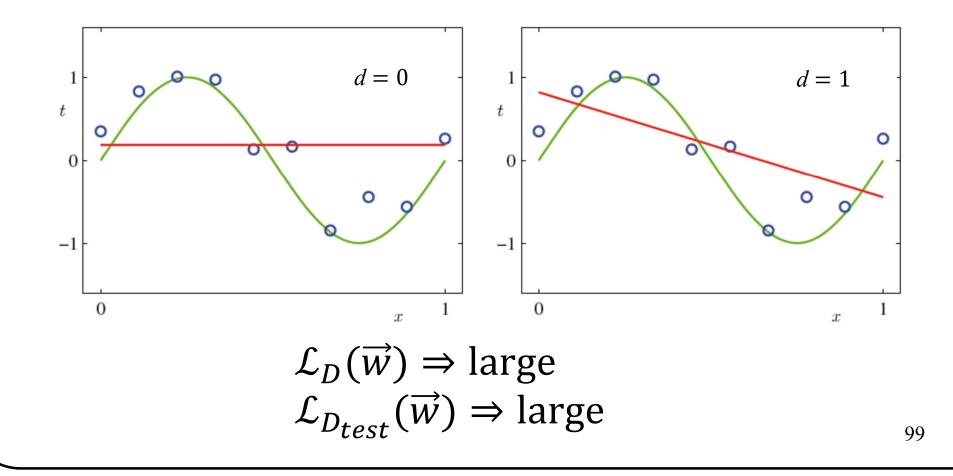
Unknowns





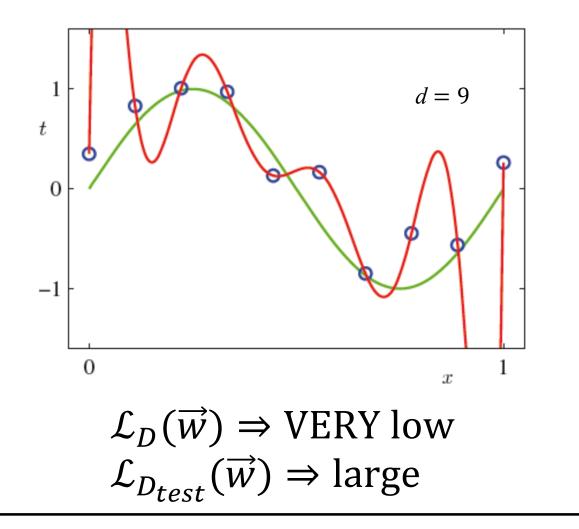
Underfitting $d = 0 \implies y_{\vec{w}}(x) = w_0$ $d = 1 \implies y_{\vec{w}}(x) = w_0 + w_1 x$

A small *d* gives a simplistic model that **underfits** the data.



Overfitting

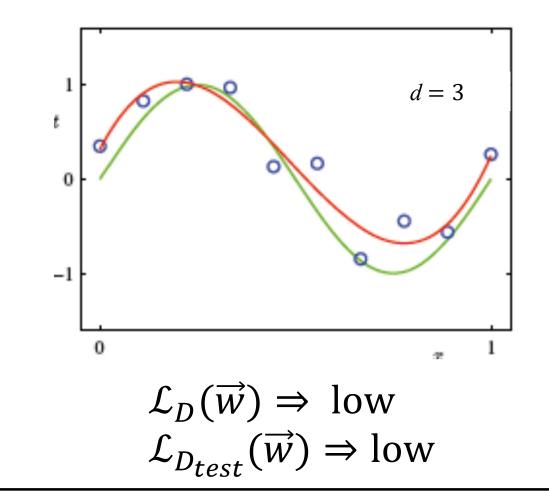
A large d gives a model that « learn by heart » and thus overfits training data



100

Over- and underfitting

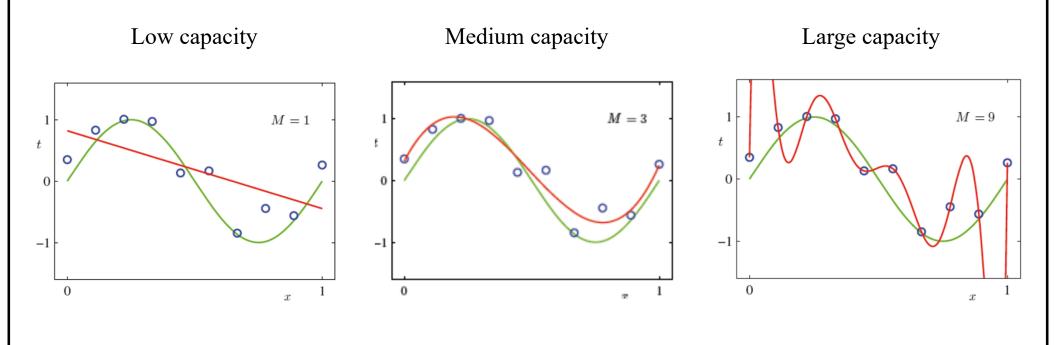
Need for an intermediate value for which the training and the testing errors are low



101

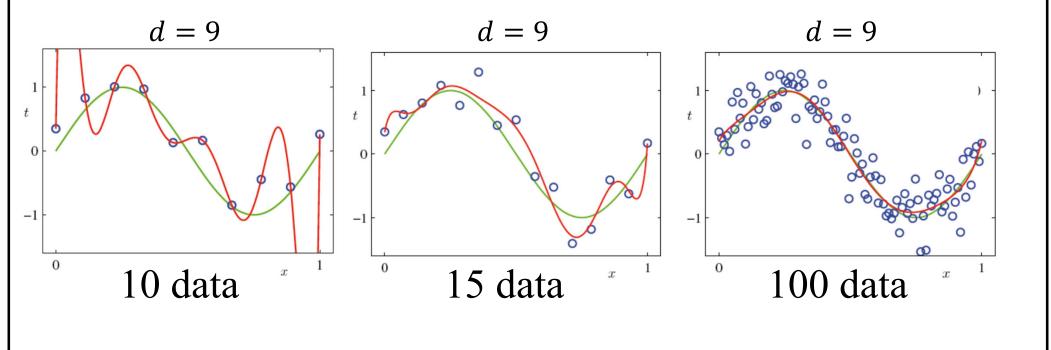
Hyperparameters often control the **capacity** of a model

Capacity: ability of a model to fit the training data



Generalization

The more data you have, the better a high capacity model will generalize.



How do we prevent our model from under- and overfitting?

Regularization

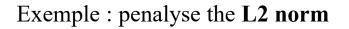
Parameter values \vec{w} for different *d* without regularization

	d = 0	d = 1	d = 3	d = 9
w_0	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Regularization

To prevent over-fitting

- 1. Choose a small « d »
- 2. Reduce capacity by regularization



Constant that controls regularization

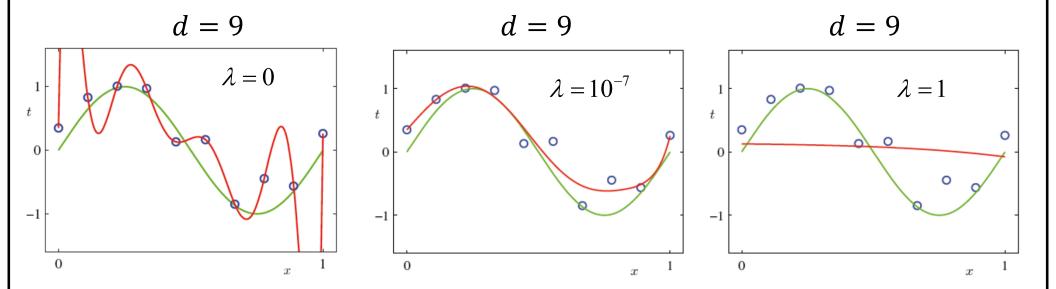
$$E_{D}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} (t_{n} - y_{\vec{w}}(\vec{x}))^{2} + \lambda \|\vec{w}\|^{2}$$

$$\|\vec{w}\|^{2} = \vec{w}^{T} \vec{w} = w_{0}^{2} + w_{1}^{2} + \dots + w_{d}^{2}$$

Ridge model

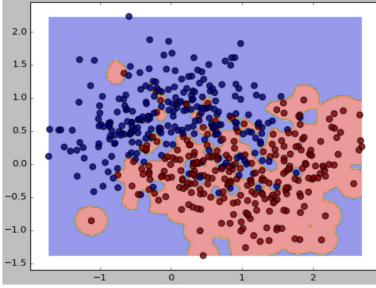
Regularization

Strong regularization= less capacity

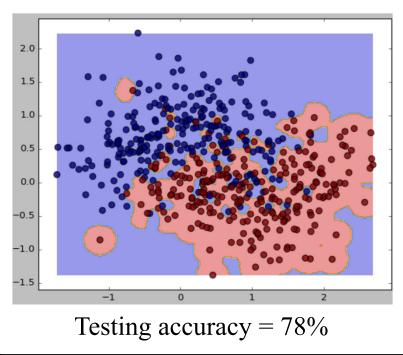


Over- and under-fitting also influence classification

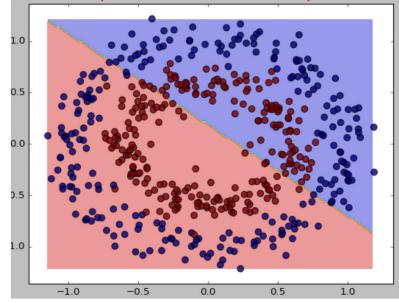
Overfitting (Classification)



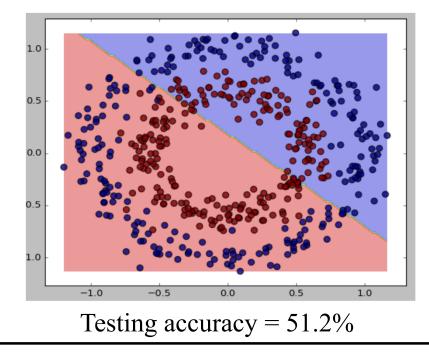
Training accuracy = 99.6%



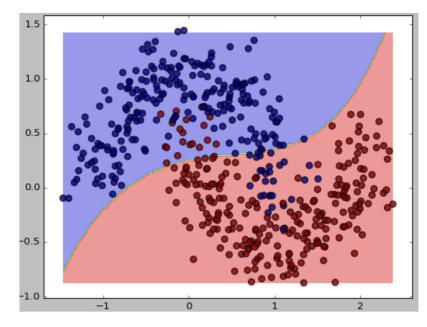
Underfitting (Classification)



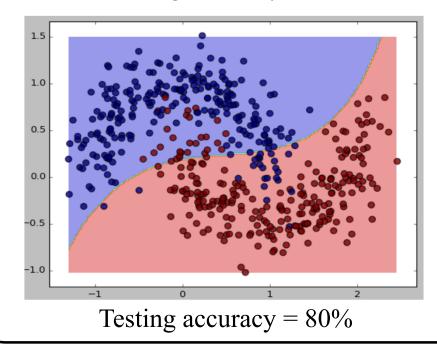
Training accuracy =52.2%



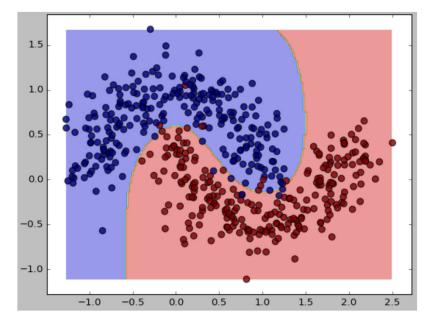
Could be better...



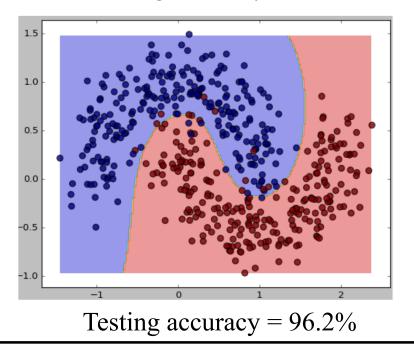
Training accuracy =82%



Wonderful !!!



Training accuracy =97.8%



$$E_D(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} (y_{\vec{w}}(x_n) - t_n)^2 + \lambda \|\vec{w}\|^2$$
$$\|\vec{w}\|^2 = \vec{w}^T \vec{w} = w_0^2 + w_1^2 + \dots + w_d^2$$

Model selection

How to find the right hyper-parameters?

d and λ

How to find the right *d* and the right λ ?

- Very bad idea : choose randomly
- **Bad idea** : take many (d, λ) and keep the one with the lowest training error

➢ overfitting

• **Bad idea** : take many (d, λ) and keep the one with the lowest testing error

 $\succ D_{test}$ should NEVER be used to train a model

• **Good solution** : take many (d, λ) and keep the one with the lowest **validation error**

Cross-validation

1- Randomly devide data in 2 groups

2- FOR *M* from M_{\min} to M_{\max} FPR λ from λ_{\min} to λ_{\max}

> Train the model on D_{train} Compute error on D_{valid}

3- Keep (M, λ) with the lowest validation error

K-fold cross-validation with K = 10

Mean validation error

STD

	♦									
	2.832	(+/-0.116)	for	{ `regression':	'poly',	'd':	3,	`lambda':	0.01}	
	1.854	(+/-0.072)	for	{ `regression':	'poly',	'd':	3,	'lambda':	0.1}	
	1.910	(+/-0.065)	for	{ `regression':	'poly',	'd':	З,	'lambda':	1}	
	1.902	(+/-0.077)	for	{ `regression':	'poly',	'd':	3,	'lambda':	10}	
	2.844	(+/-0.101)	for	{ 'regression':	'poly',	'd':	4,	'lambda':	0.01}	
	2.864	(+/-0.089)	for	{ `regression':	'poly',	'd':	4,	'lambda':	0.1}	
	1.910	(+/-0.065)	for	{ 'regression':	'poly',	'd':	4,	'lambda':	1}	
	1.894	(+/-0.086)	for	{ 'regression':	'poly',	'd':	4,	'lambda':	10}	
	2.848	(+/-0.080)	for	{ 'regression':	'poly',	'd':	5,	'lambda':	0.01}	
_	1.904	(+/-0.064)	for	{ 'regression':	'poly',	'd':	5,	'lambda':	0.1}	BEST!
	0.916	(+/-0.069)	for	{ 'regression':	'poly',	'd':	5,	'lambda':	1}	d=5.
	1.870	(+/-0.072)	for	{ 'regression':	'poly',	'd':	5,	'lambda':	10}	$\lambda = 1$
	2.846	(+/-0.090)	for	{ 'regression':	'poly',	'd':	6,	'lambda':	0.01}	<i>70</i> 1
	2.906	(+/-0.062)	for	{ 'regression':	'poly',	'd':	6,	'lambda':	0.1}	
	1.904	(+/-0.075)	for	{ 'regression':	'poly',	'd':	6,	'lambda':	1}	
	2.858	(+/-0.112)	for	{ `regression':	'poly',	'd':	6,	'lambda':	10}	

k-fold cross-validation

KFold(5)1234ValidationTest123Validation5Test12Validation45Test1Validation345Test			Train			Test
1 2 3 Validation 5 Test 1 2 Validation 4 5 Test		KFold(5)				
1 2 Validation 4 5 Test	1	2	3	4	Validation	Test
1 2 Validation 4 5 Test						
	1	2	3	Validation	5	Test
1 Validation 3 4 5 Test	1	2	Validation	4	5	Test
1 Validation 3 4 5 Test						
	1	Validation	3	4	5	Test
Validation2345Test	Validation	2	3	4	5	Test

In short

- ✓ The goal is to train a model on a training dataset with good generalization capabilities
- ✓ Training = minimization of a **loss function**
- ✓ Has hyper-parameters that control the capacity of the model, choisis à l'aide d'une procédure de sélection de modèle
- ✓ mesure sa performance de généralisation sur un ensemble de test
- Aura une meilleure performance de généralisation si la quantité de données d'entraînement augmente
- Peut souffrir de sous-apprentissage (pas assez de capacité) ou de sur-apprentissage (trop de capacité)

Thank you!