

CREATIS

Deep Learning State of the Art Convolutional Architectures

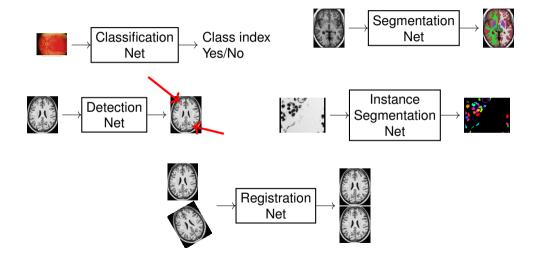
Michaël Sdika 1

¹CNRS, CREATIS UMR 5220

Machine learning



- physiological parameters
- Yes/No
- Category
- ..



...

Supervized Deep Learning

- ▶ How to represent the mapping?
 - Deep learning : Neural network
 - Which architecture for the network?
- How to estimate the network coefficient?
 - Loss functions?
 - Optimization?
 - Generalization?

5 classes of architectures adressed in this course

Outline

Short reminder on MLP and CNN

Architecture for some important applications

Classifiers

Encoder / Decoder architectures

Detection

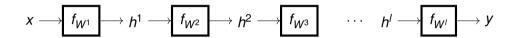

Instance Segmentation

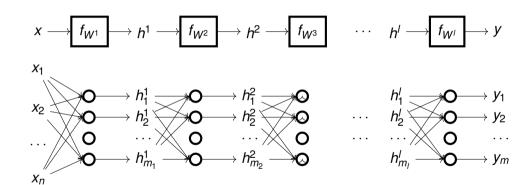
Image Registration

Extra

What about memory?

Deep Neural Network

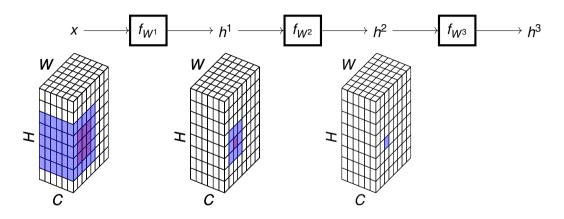
Basic Layers:

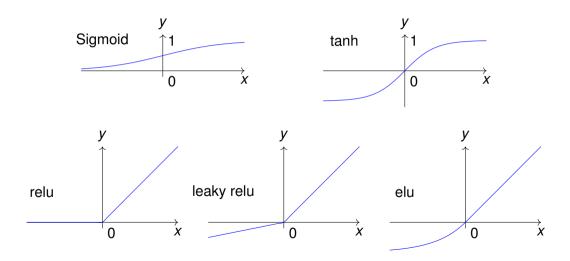

► Linear Layers : Fully Connected / Convolution : mixing features

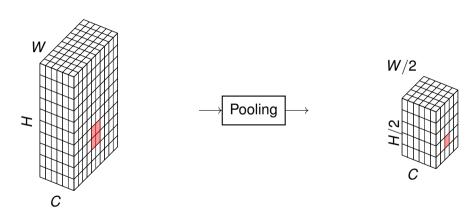
► Activation layers : introducing nonlinearity

► Pooling layers : spatial aggregation, subsampling

► Normalization layers : stabilizing the training


Multi Layer Perceptron

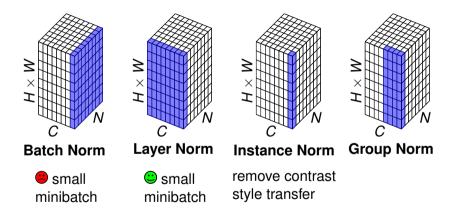

Multi Layer Perceptron


CNN

Activation functions

Pooling

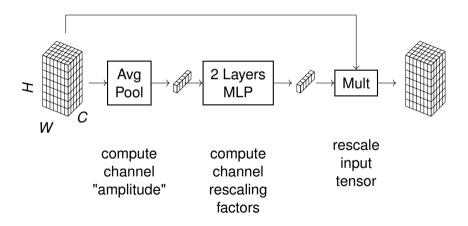
Normalization


- \triangleright deep network : need to normalize input x such that x N(0,1)
- Z-normalization
- what about features within the network?

Batch Normalization

- $\blacktriangleright \mu, \sigma$: mean, std of x over a minibatch
- $\triangleright \gamma, \beta$: trainable parameters
- ▶ Inference : use average μ , σ from training

Related Normalization



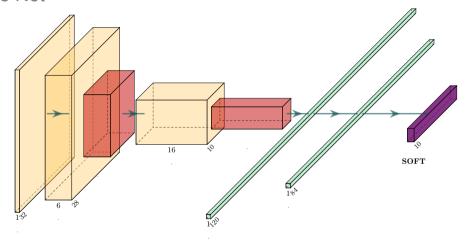
Ulyanov et al arxiv 2016, Instance normalization : The missing ingredient for fast stylization

Ba et al, 2016, Layer Normalization

Wu & He 2018, Group Normalization

Squeeze and Excitation

Outline


Short reminder on MLP and CNN

Architecture for some important applications Classifiers

Detection
Instance Segmentation
Image Registration

Extra

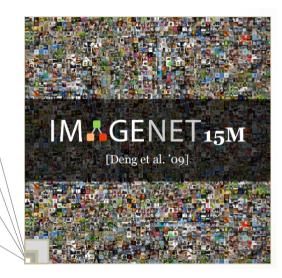
Le Net

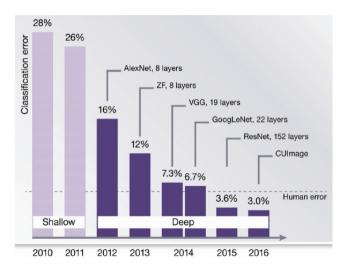
LeCun et al., Neural Computation 1989, "Backpropagation Applied to Handwritten Zip Code Recognition" LeCun et al., 1998, Proceedings of the IEEE, Gradient-based learning applied to document recognition.

SUN, 131K

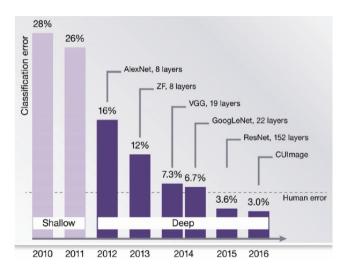
[Xiao et al. '10]

LabelMe, 37K

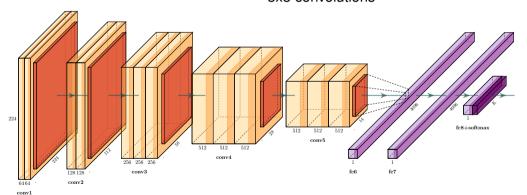

[Russell et al. '07]

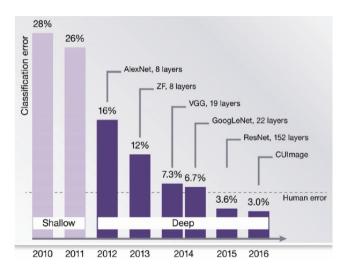

PASCAL VOC, 30K

[Everingham et al. '06-'12]

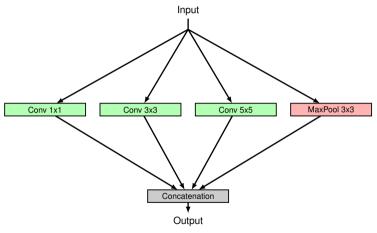

Caltech101, 9K

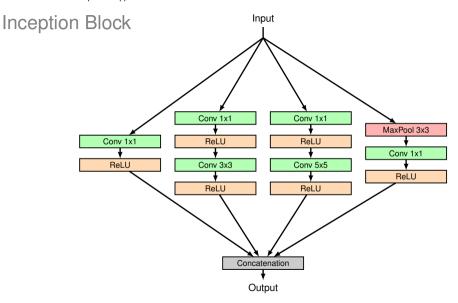
[Fei-Fei, Fergus, Perona, '03]

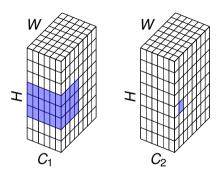

nage: 28 (height) × 28 (width) × 1 (channel) volution with 5×5 kernel+2padding:28×28×6 √ sigmoid ol with 2×2 average kernel+2 stride:14×14×6 volution with 5×5 kernel (no pad):10×10×16 √ sigmoid ol with 2×2 average kernel+2 stride: 5×5×16 √ flatten Dense: 120 fully connected neurons √ sigmoid Dense: 84 fully connected neurons √ sigmoid Dense: 10 fully connected neurons √ sigmoid	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
nvolution with 5×5 kernel+2 padding:28×28×6 sigmoid ol with 2×2 average kernel+2 stride:14×14×6 nvolution with 5×5 kernel (no pad):10×10×16 sigmoid ol with 2×2 average kernel+2 stride:5×5×16 flatten Dense: 120 fully connected neurons sigmoid Dense: 84 fully connected neurons sigmoid	Convolution with 11×11 kernel+4 stride: $54\times54\times96$ $$\lozenge$ ReLu Pool with 3×3 max. kernel+2 stride: $26\times26\times96$ Convolution with 5×5 kernel+2 pad: $26\times26\times256$ $$\lozenge$ ReLu Pool with 3×3 max.kernel+2 stride: $12\times12\times256$ Convolution with 3×3 kernel+1 pad: $12\times12\times384$ $$\lozenge$ ReLu Convolution with 3×3 kernel+1 pad: $12\times12\times384$ $$\lozenge$ ReLu Convolution with 3×3 kernel+1 pad: $12\times12\times384$
sigmoid ol with 2×2 average kernel+2 stride: 14×14×6 volution with 5×5 kernel (no pad):10×10×16 yigmoid ol with 2×2 average kernel+2 stride: 5×5×16 y flatten Dense: 120 fully connected neurons y sigmoid Dense: 84 fully connected neurons y sigmoid	ReLu
ol with 2×2 average kernel+2 stride:14×14×6 nvolution with 5×5 kernel (no pad):10×10×16 ↓ sigmoid ol with 2×2 average kernel+2 stride:5×5×16 ↓ flatten Dense: 120 fully connected neurons ↓ sigmoid Dense: 84 fully connected neurons ↓ sigmoid	Pool with 3×3 max. kernel+2 stride: 26×26×96 Convolution with 5×5 kernel+2 pad:26×26×256 AReLu Pool with 3×3 max.kernel+2 stride: 12×12×256 Convolution with 3×3 kernel+1 pad:12×12×384 AReLu Convolution with 3×3 kernel+1 pad:12×12×384 ARELu Convolution with 3×3 kernel+1 pad:12×12×384
nvolution with 5×5 kernel (no pad):10×10×16 ↓ sigmoid ol with 2×2 average kernel+2 stride: 5×5×16 ↓ flatten Dense: 120 fully connected neurons ↓ sigmoid Dense: 84 fully connected neurons ↓ sigmoid	Convolution with 5×5 kernel+2 pad:26×26×256 \$\$\$ \int ReLu\$ Pool with 3×3 max.kernel+2stride:12×12×256 Convolution with 3×3 kernel+1 pad:12×12×384 \$\$\$\$\$\$\$\$\$\$\$\$ ReLu\$ Convolution with 3×3 kernel+1 pad:12×12×384 \$
↓ sigmoid ol with 2×2 average kernel+2 stride: 5×5×16 ↓ flatten Dense: 120 fully connected neurons ↓ sigmoid Dense: 84 fully connected neurons ↓ sigmoid	
↓ sigmoid ol with 2×2 average kernel+2 stride: 5×5×16 ↓ flatten Dense: 120 fully connected neurons ↓ sigmoid Dense: 84 fully connected neurons ↓ sigmoid	
ol with 2×2 average kernel+2 stride: 5×5×16 ↓ flatten Dense: 120 fully connected neurons ↓ sigmoid Dense: 84 fully connected neurons ↓ sigmoid	Pool with 3×3 max.kernel+2stride:12×12×256 Convolution with 3×3 kernel+1 pad:12×12×384 ↓ ReLu Convolution with 3×3 kernel+1 pad:12×12×384 ↓ ReLu
↓ flatten Dense: 120 fully connected neurons ↓ sigmoid Dense: 84 fully connected neurons ↓ sigmoid	↓ Convolution with 3×3 kernel+1 pad:12×12×384 ↓ ReLu Convolution with 3×3 kernel+1 pad:12×12×384 ↓ ReLu
Dense: 120 fully connected neurons √ sigmoid Dense: 84 fully connected neurons √ sigmoid	
√ sigmoid Dense: 84 fully connected neurons √ sigmoid	
Dense: 84 fully connected neurons ↓ sigmoid	Convolution with 3×3 kernel+1 pad:12×12×384 ↓ ReLu
√ sigmoid	√ ReLu
Dense: 10 fully connected neurons	
Delice. To faily confidence field of the	Convolution with 3×3 kernel+1 pad:12×12×256
<u> </u>	√ReLu
Output: 1 of 10 classes	Pool with 3×3 max.kernel+2stride:5×5×256
	√flatten
	Dense: 4096 fully connected neurons
	ReLu, dropout p=0.5
	Dense: 4096 fully connected neurons
	ReLu, dropout p=0.5
	Dense: 1000 fully connected neurons
	Output: 1 of 1000 classes

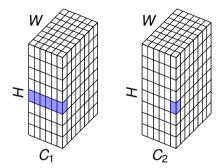

VGG

Deeper network

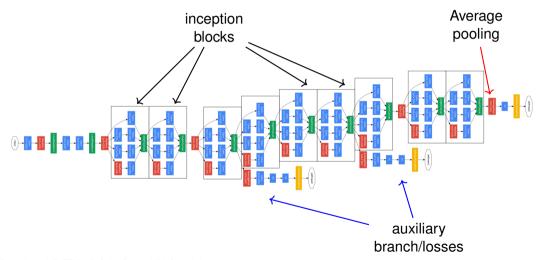

3x3 convolutions

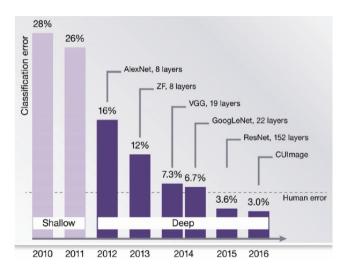

Simonyan & Zisserman, ICLR 2015, Very Deep Convolutional Networks for Large-Scale Image Recognition

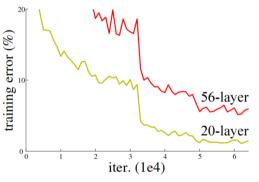

Inception Block

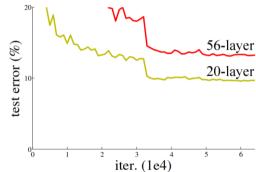

Szegedy et al, CVPR 2015, Going Deeper With Convolutions

1x1 Convolution

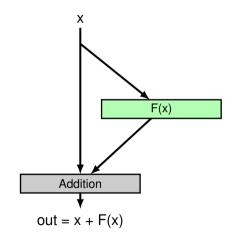



3x3 convolution receptive field


1x1 convolution receptive field

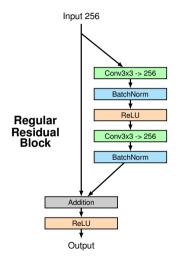

GoogLe Net

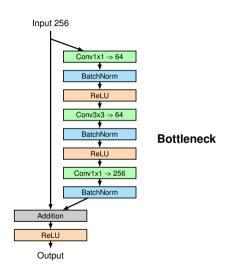
Going Deeper??

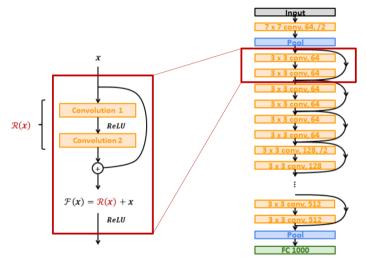

Residual Block

observation:

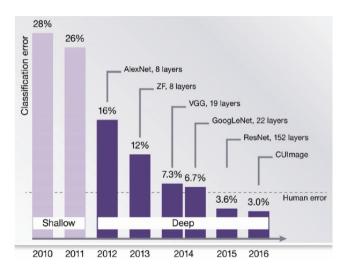
- ▶ more layers ⇒ higher train errors
- Problem is training

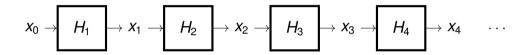

Architecture easier to train


Vanishing gradient


He etal, CVPR 2016, Deep Residual Learning for Image Recognition.

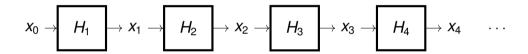
Residual Block




Res Net

He et al, CVPR 2016, Deep Residual Learning for Image Recognition

Dense Block

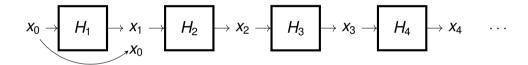


$$X_{l} = X_{l-1} + H_{l}(X_{l-1})$$

Dense block:

$$x_l = H_l([x_0, x_1, \dots, x_{l-1}])$$

Dense Block

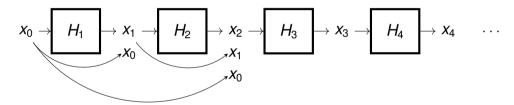


$$X_{l} = X_{l-1} + H_{l}(X_{l-1})$$

Dense block:

$$x_l = H_l([x_0, x_1, \dots, x_{l-1}])$$

Dense Block

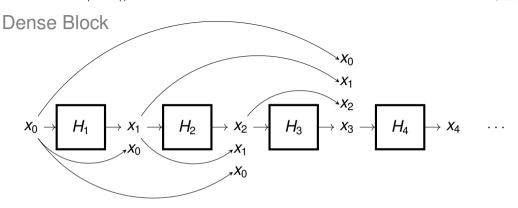


$$X_{l} = X_{l-1} + H_{l}(X_{l-1})$$

Dense block:

$$x_l = H_l([x_0, x_1, \dots, x_{l-1}])$$

Dense Block

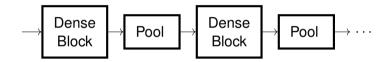


Res block:

$$X_{l} = X_{l-1} + H_{l}(X_{l-1})$$

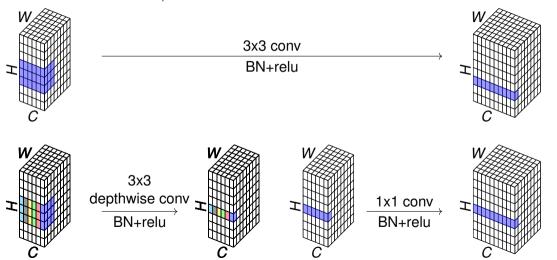
Dense block:

$$x_l = H_l([x_0, x_1, \dots, x_{l-1}])$$

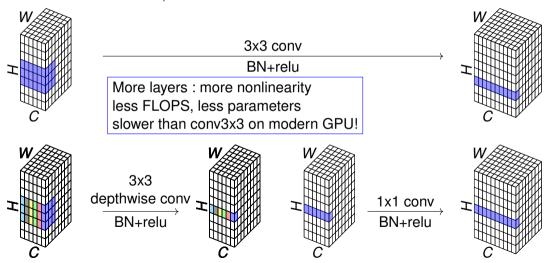

$$X_l = X_{l-1} + H_l(X_{l-1})$$

Dense block:

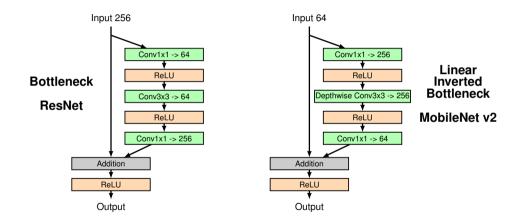
$$x_l = H_l([x_0, x_1, \dots, x_{l-1}])$$


Gao, et al. CVPR 2017, Densenet : densely connected convolutional networks

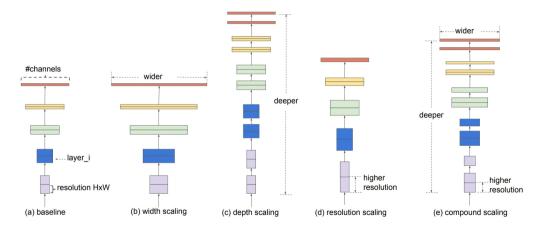
Dense Net


Gao, et al. CVPR 2017, Densenet : densely connected convolutional networks

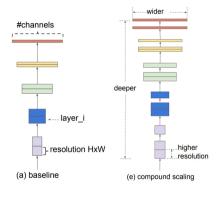
Mobile Net V1: depthwize conv


L. Sifre. Rigid-motion scattering for image classification. PhD thesis, Ph. D. thesis, 2014. 1, 3 Howard et al, arxiv 2017, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Mobile Net V1: depthwize conv

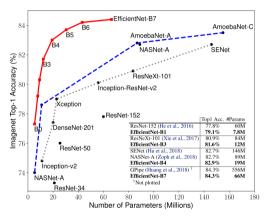

L. Sifre. Rigid-motion scattering for image classification. PhD thesis, Ph. D. thesis, 2014. 1, 3 Howard et al, arxiv 2017, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

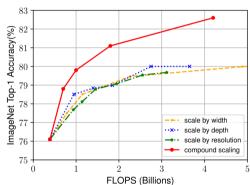
Mobile Net V2: inverted bottleneck



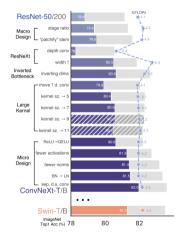
Sandler et al. CVPR 2018, MobileNetV2: Inverted Residuals and Linear Bottlenecks

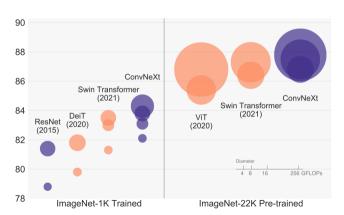
Efficient Net: compound scaling of networks


Efficient Net: compound scaling of networks



- depth, width, resolution for B1
 - $d_1 = \alpha d_0$
 - $w_1 = \beta w_0$
 - $r_1 = \gamma r_0$
- ightharpoonup grid search for α , β , γ
- \triangleright Bk : α^k , β^k , γ^k


Efficient Net v2 : architecture grid search fo B0


Efficient Net

ConvNext

Outline

Short reminder on MLP and CNN

Architecture for some important applications

Classifiers

Encoder / Decoder architectures

Detection Instance Segmentation Image Registration

Extra

Encoder/Decoder architecture

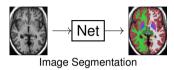
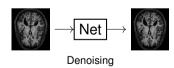
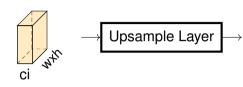
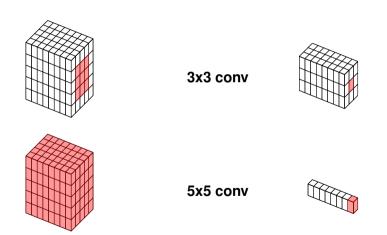
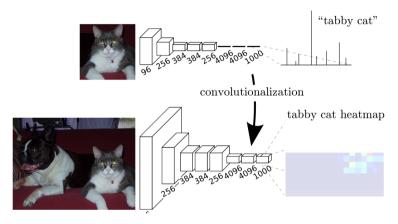




Image Synthesis, Domain adaptation

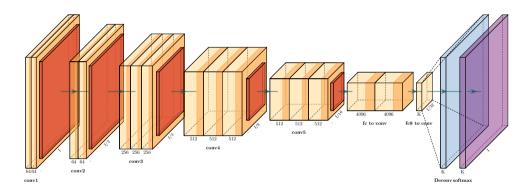
Upsampling Layer


co anten

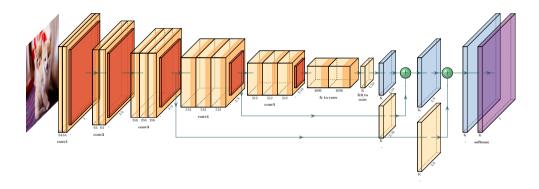
- deconv
 - transpose of strided conv matrix
 - learn the upsampling coefficient
- unpool :
 - upsample on maxpool indices
- interpolation
 - bi/tri linear
 - no chessboard artifact



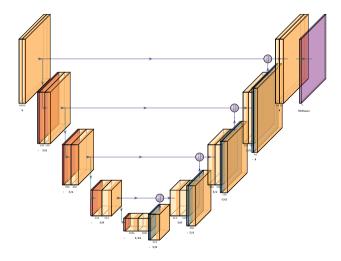
Fully Convolutional Network: FC as convolution



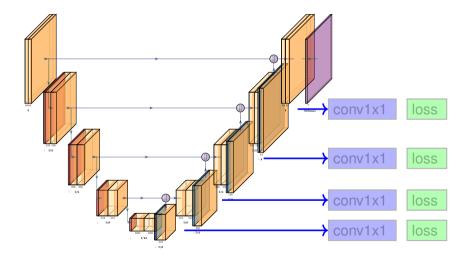
Fully Convolutional Network: FC as convolution


use kernels that cover their entire input regions

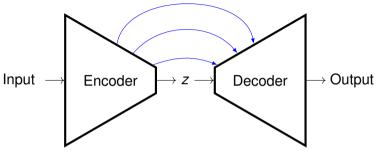
Fully Convolutional Network


deconv layer + pixelwize cross entropy

Fully Convolutional Network



progressive upsampling + reuse fine scale features


Unet

Unet

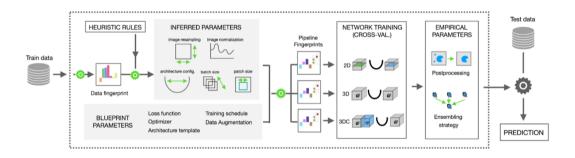
Encoder / Decoder

Tiramisu Net:

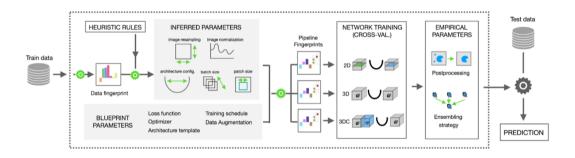
* conv → dense block

Unet+ / Unet++:

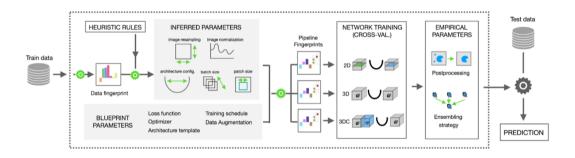
* add skip connection across scale


Eff-UNet:

- * Encoder is efficient net
- * standard unet Decoder


Jegou et al, CVPR 2017, The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation

Baheti et al, CVPR 2020, Eff-UNet: A Novel Architecture for Semantic Segmentation in Unstructured Environment


nn-Unet: self configuration

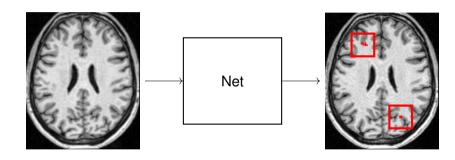
nn-Unet: self configuration

nn-Unet: self configuration

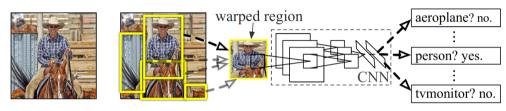
Outline

Short reminder on MLP and CNN

Architecture for some important applications

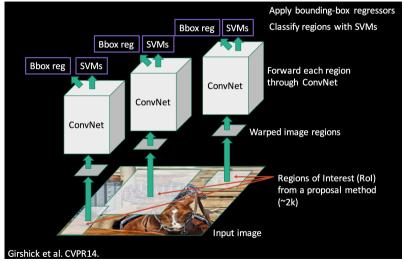

Classifiers

Detection

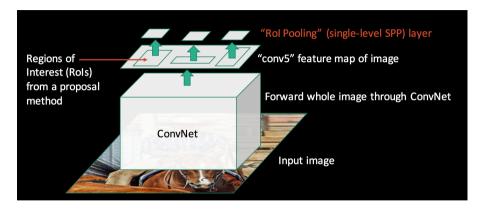

Instance Segmentation Image Registration

Extra

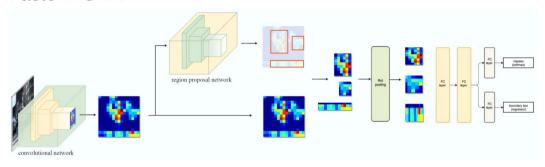
Object Detection


R-CNN

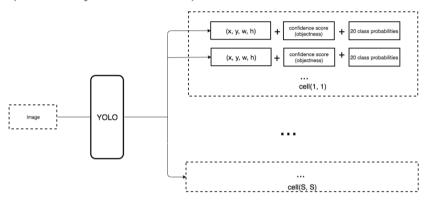
- regions extractor (non deep)
- ▶ for each region
 - deep feature
 - classif + box regression


 \rightarrow very slow

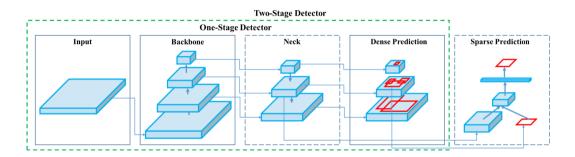
R-CNN


Girshick, et al. CVPR 2015, Rich feature hierarchies for accurate object detection and semantic segmentation (credit: jhui.github.io/2017/03/15/Fast-R-CNN-and-Faster-R-CNN)

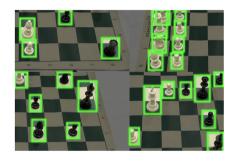
Fast RCNN

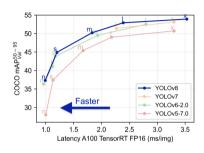

► all the feature computed at once

Faster RCNN


- ▶ DEEP region proposal network : for each position in the feature map, output
 - k proba : object vs non object
 - k offset for bounding box proba

YOLO (You Only Look Once)


- yolo V1 : CNN → pb with small object
- ▶ yolo V2, V3 : Unet


YOLO (You Only Look Once)

Bochkovskiy et al, arxiv 2020, Yolov4: Optimal speed and accuracy of object detection

YOLO (You Only Look Once)

Architecture	mAP@50	GPU Latency
YOLOV8	0.62	1.3ms
EfficientDet	0.47	i -
Faster R-CNN	0.41	54ms
YOLOV5	0.58	2.8ms

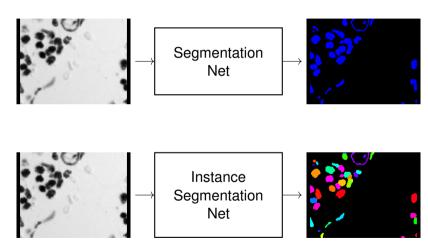
Outline

Short reminder on MLP and CNN

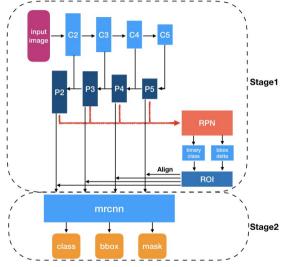
Architecture for some important applications

Classifiers

Encoder / Decoder architectures

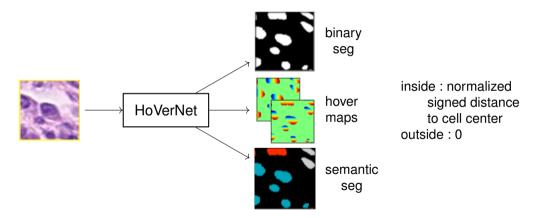

Detection

Instance Segmentation


Image Registration

Extra

Instance Segmentation


Mask R-CNN

He, Kaiming, et al, ICCV 2017, Mask r-cnn

 $https: /\!/ a little pain 833. medium. com/simple-understanding-of-mask-rcnn-134b 5b 330e 95$

HoVerNet

Graham, et al. "Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images." Medical image analysis, 2019

HoVerNet

Image Crop

Horizontal Map Prediction

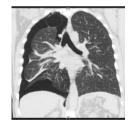
Horizontal Map

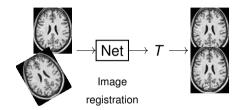
Vertical Map

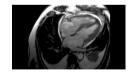
Vertical Map Ground Truth

Graham, et al. "Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images." Medical image analysis, 2019

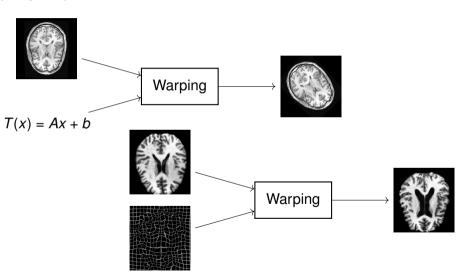
Outline

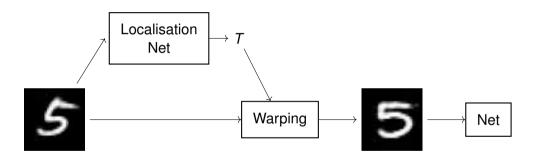

Short reminder on MLP and CNN

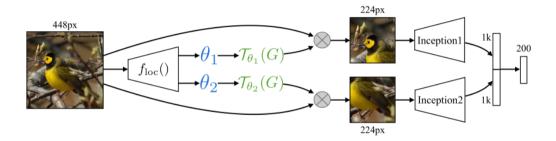

Architecture for some important applications

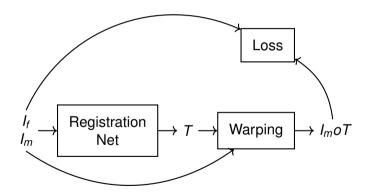

Classifiers
Encoder / Decoder architectures
Detection
Instance Segmentation
Image Registration

Extra


Motion/Registration




Warping Layer


Spatial Transformer Networks

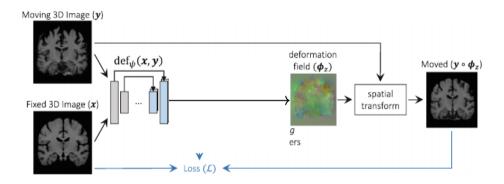
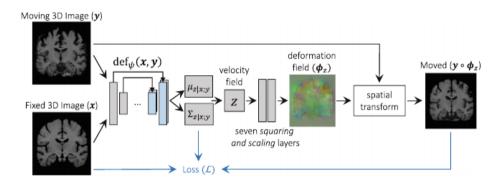
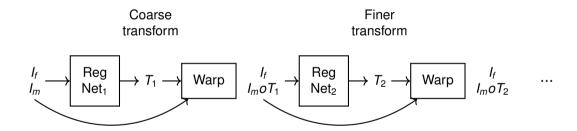

Spatial Transformer Networks

Image registration with deep learning



Unsupervized learning, VoxelMorph


registration loss : no reference warp needed

Unsupervized learning, VoxelMorph

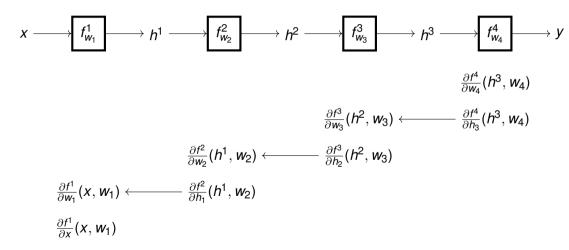
- registration loss : no reference warp needed
- T(x) = Exp(v): diffeomorphic \leftarrow scaling and squaring layers

Coarse to fine registration

Outline

Short reminder on MLP and CNN

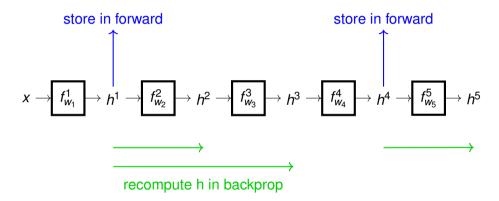
Architecture for some important applications


Extra

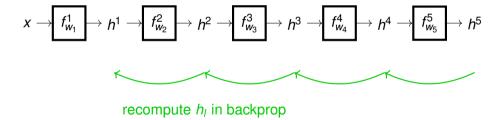
What about memory?

What about memory?

```
torch/nn/modules/conv.py", line 587, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/home/conda/.conda/envs/cudall.0/lib/python3.8/site-packages/
torch/nn/modules/conv.py", line 582, in _conv_forward
return F.conv3d(
RuntimeError: CUDA out of memory. Tried to allocate 9.79 GiB (GPU 0;
11.91 GiB total capacity; 730.73 MiB already allocated; 8.67 GiB free; 1.21 GiB reserved in total by PyTorch)
```

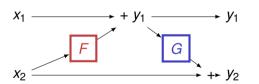

Where is the memory?

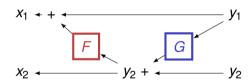
First Trick


Reduce the batch size!!!

Second Trick: Checkpointing

Third Trick: Revertible Networks


do no store h_l in forward



Third options: Revertible Networks

$$y_1 = x_1 + F(x_2)$$

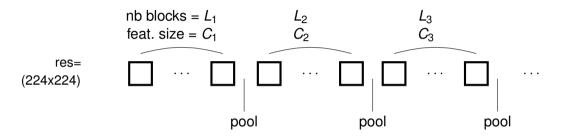
 $y_2 = x_2 + G(y_1)$

$$x_2 = y_2 - G(y_1)$$

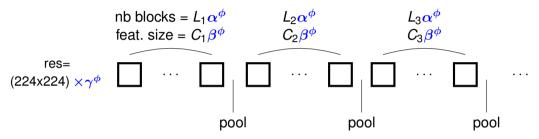
 $x_1 = y_1 - F(x_2)$

Gomez et al, Neurips 2017, The reversible residual network: Backpropagation without storing activations

Conclusion


Take home message

Do not start your new network from scratch!


Thank you!!

Efficient Net: compound scaling of networks

Efficient Net: compound scaling of networks

- ▶ base network EffNet₁, $(\phi = 1)$
- \blacktriangleright find α, β, γ :
 - $\phi = 1$
 - optimize accuracy/flops s.t. $\alpha \beta^2 \gamma^2 \approx 2$

- ▶ More Capacity : change ϕ : EffNet_{ϕ}
- ▶ flops = flops₁ × $(\alpha \beta^2 \gamma^2)^{\phi}$